- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
Yes, these would be ignitable mixtures. In this case, it does not appear complicated geometry is involved, so 1200 psig pipe should be more than adequate to protect against internal deflagration. The most likely scenario is a "backfire," similar to a car, where ignition occurs too soon and shoots out the open end of the pipe. Consider using an inline deflagration flash arrestor on the…
1. As of January 2024, we are not aware of any public data on incidents or investigations where a hydrogen fired steam boiler exploded.
2. The potential for detonations within a boiler tube would depend on both the equivalence ratio of the hydrogen present and the diameter of the boiler tube.
a. At a minimum, if the circumference of the tube is…
CGA G-5.5 states: All vent stacks shall be grounded and meet the requirements of NFPA 70, National Electrical Code, for integrity and system design and also references NFPA 77, Recommended Practice on Static Electricity, and NFPA 780, Standard for the Installation of Lightning Protection Systems.
For lightening refer to NFPA 780 and for grounding of the Hydrogen equipment, refer to…
AICHE ELA253 CHS ” Introduction to Hydrogen Safety for First Responders” is a good reference and discusses both LH2 and GH2. LH2 fires are very unusual. LH2 releases usually are GH2 so the fires at either ambient for low flow or the GH2 is a cryo temperature for high flow. Fires from LH2 tanks ignite less frequently than GH2 high-velocity releases. The colder the gas the less potential for…
Several organizations published a paper together on this topic in 2017 (see attached). Based on comparisons with tests and CFD simulations, the following conclusions were drawn:
There are numerous models that can be used to assess the consequence and risk of leaks and releases.
One such model is HYRAM which is publicly available from Sandia and the US DOE.
Emergency response procedures must be developed for each system based on its design. The
procedures generally include steps to clear personnel from the immediate area, isolate the hydrogen,
shut down the equipment, contact local responders, and protect surrounding equipment/structures until
the hazard is mitigated or the incident is over.
Absolutely. Vent systems will experience a variety of transient conditions of pressure, temperature, and thrust load, so stress analysis to anticipate the strength and flexibility needed are important for safe design. These issues are often overlooked and only become an issue when they are called upon to operate in emergencies.
It is a best practice to include the vent system in…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.