- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Contact
- About H2Tools
This is an impossible question to answer without greater understanding of the quantities of hydrogen involved, the types of vessels involved, and the atmospheric conditions. Several companies offer software to model such releases. It’s important to note that there is a high probability of ignition either during the vessel rupture or from nearby ignition sources.
Vaporization of a trapped volume of LH2 will lead to significant increase in pressure due to the very large expansion ratio as the liquid converts to gas. Relief devices are required since the pressure increase is likely to be far in excess of the pressure rating of the system. When vaporized as part of a flowing process, pressure will not increase. As the LH2 is warmed, it undergoes a phase…
A pressure of 600 kPa (87 psi) is relatively moderate, so the combustion properties are similar to those at atmospheric pressure where the autoignition temperature of hydrogen is 585°C.
H2-air flammability limits vary with temperature . The H2-air lower flammability limit is virtually the same as the H2-O2 lower limit. However, the H2-O2 upper flammability limit increases substantially to about 95% at room temperature and gets even higher at elevated temperatures.
…In the case of fuel-rich mixtures like those in the question, the heat of combustion for the mixture should be calculated on the basis of the oxygen content of the mixture. The heat of combustion per mole oxygen is twice the heat of combustion per mole hydrogen, i.e., it is 286*2 kJ per mole O2. You should be able to do the calculations based on this reply.
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.