- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Contact
- About H2Tools
A "drop and swap" delivery system using tube trailers is a common and accepted method of supply for both industrial and fueling station applications. While NFPA 2 - 2023, paragraph 10.6.3.5 states, "The use of hose in a hydrogen dispensing system shall be limited to vehicle fueling hose," this is intended for the dispenser itself, not the entire fueling station. This does not limit the use of…
Many methods are used to mitigate the risk of a tube trailer hose loss of containment incident. Examples that otherwise exceed code requirements are provided below. These have been deployed in various combinations depending on the risk analysis for a particular system:
Gaseous hydrogen can be stored forever as long as the system integrity is maintained. However, liquid hydrogen is “use it or lose it” and will boil from system heat leak and build pressure unless it is used or vented. This is not usually an issue for continuous use or low-pressure applications which can use hydrogen gas pressure directly from the tank.
For intermittent or high…
Several programs can predict this such as HyRAM or PHAST. The inputs are critical to a safe
answer.
This is not a simple answer due to the many types of flame lengths and flame orientations due to pressure and direction. NFPA 2 recommends that vent systems should be designed so that if the safety relief valve is relieving at capacity the radiative heat felt by an individual at grade…
Water icing at the exit of a stack is certainly an issue in cold climates. Significant effort has been put into vent stack outlet design to minimize the probability. Documents such as CGA G5.5 have topworks that are recommended. Stacks that face upward have a higher probability of having water, ice, or snow enter the stack and freeze.
Delayed ignition is a significant hazard for hydrogen releases, either intended or unintended. The primary concern is the overpressure and energy release created from a vapor cloud which could contain a significant quantity of hydrogen. The H2Tools Incidents database contains a number of examples of delayed ignition.
Absolutely. Vent systems will experience a variety of transient conditions of pressure, temperature, and thrust load, so stress analysis to anticipate the strength and flexibility needed are important for safe design. These issues are often overlooked and only become an issue when they are called upon to operate in emergencies.
It is a best practice to include the vent system in…
There are many potential sources of delayed ignition. Hydrogen is easily ignited, and the larger the cloud, the more likely it is for it to find an ignition source. The cloud itself may serve as an ignition source as the force of the gas release may cause dust or other contaminants to mix in the air creating a static charge which ignites the hydrogen. Similarly, the force of the release can…
The answer is dependent upon the nature of the system and a hazard assessment which evaluates a balance of risk.
Keeping the hydrogen in the vessel is better so the hydrogen release does not compound the original hazard. Large flowrates from vessels can create significant risk of vapor cloud explosion, jet explosion, or radiation exposure. Vent systems can also fail from poor…
Outside storage is generally considered safer and is required for large amounts of gas. Stationary storage should be located outside at a safe distance from structures and ventilation intakes, and protected from vehicle impact.
Hydrogen storage separation distance requirements are typically based on the quantity and pressure of the hydrogen or the piping diameter, depending on the…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.