- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Contact
- About H2Tools
The Panel recommends performing a pressure test at 110% of design pressure. This requirement should be applied to all systems regardless of construction type since the intent is to ensure pressure integrity and proper installation. All fitting types have modes of failure during installation. For example, there are numerous examples where compression fittings have had ferrules installed…
The HSP recommends against the use of glycols for pressure tests due to the difficulty of adequately removing all glycol that might be left in a system after a hydrotest. The HSP recommends a pneumatic test at 110% of the system maximum allowable working pressure (MAWP), which is acceptable by code. Due to an increased danger with pneumatics vs hydrotesting, establish a pressure test zone for…
The UN ECE R134 regulation is a good requirement to follow as it copies the language in the UN GTR #13 regulation. The updated version of this UN document (UN GTR #13 Phase 2) is currently in approval review at the GRSP in Geneva and should be approved by the end of 2023. Nevertheless, since the US Department of Transportation’s National Highway Traffic Safety Administration is a contracting…
Hydrogen affects the mechanical properties of most materials. For example, hydrogen reduces the
fracture toughness and increases the fatigue crack growth rate in steels. There is a significant amount of
research, analytical work, and codes and standards development being undertaken to improve our
understanding of how these materials can be utilized in pipelines. The results of the…
Because cast irons are relatively brittle materials, they should generally be avoided in industrial and
transmission pipeline applications. In low pressure applications like residential distribution piping
systems, the use of cast irons is probably acceptable.
Acceptability of materials is highly dependent on the specific application. Applied stress levels, exposure to contaminants, the operating temperature, the partial pressure, and number and magnitude of material stress cycles are some of the factors that affect material selection. Guidance is provided within documents such as ISO 11114, Gas cylinders - Compatibility of cylinder and valve…
Detection systems are nearly always installed but the system design and installation details of detection equipment are up to the manufacturer. Standards are being developed for this market.
Hydrogen has been transported safely through pipelines for over 50 years. There are dozens of pipeline networks in safe operation globally, with several individual networks that approach up to 1000 miles.
Significant testing and some demonstration projects are underway to ensure safety. Some of the aspects under investigation include compatibility of the pipe and other materials,…
All systems must be designed for the applicable operating parameters such as pressure, temperature,
and flow. The sub-cooled liquid hydrogen (sLH2) approach for fueling is comparable to other processes
commonly used to handle cryogenic liquids in the industrial gas industry where remaining gas is
condensed during the fill operation. These processes often operate above the critical…
Hydrogen has been used as a fuel to operate cars, buses, trucks, submarines, aircraft, forklifts, trains and virtually every type of mobile equipment. Each has special considerations which often drive specific requirements for that vehicle type. For example, higher g-loadings of rail operations and operations within tunnels are a couple considerations, but there are no significant barriers…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.