- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Contact
- About H2Tools
A "drop and swap" delivery system using tube trailers is a common and accepted method of supply for both industrial and fueling station applications. While NFPA 2 - 2023, paragraph 10.6.3.5 states, "The use of hose in a hydrogen dispensing system shall be limited to vehicle fueling hose," this is intended for the dispenser itself, not the entire fueling station. This does not limit the use of…
Many methods are used to mitigate the risk of a tube trailer hose loss of containment incident. Examples that otherwise exceed code requirements are provided below. These have been deployed in various combinations depending on the risk analysis for a particular system:
1. As of January 2024, we are not aware of any public data on incidents or investigations where a hydrogen fired steam boiler exploded.
2. The potential for detonations within a boiler tube would depend on both the equivalence ratio of the hydrogen present and the diameter of the boiler tube.
a. At a minimum, if the circumference of the tube is…
Yes, these would be ignitable mixtures. In this case, it does not appear complicated geometry is involved, so 1200 psig pipe should be more than adequate to protect against internal deflagration. The most likely scenario is a "backfire," similar to a car, where ignition occurs too soon and shoots out the open end of the pipe. Consider using an inline deflagration flash arrestor on the…
Gaseous hydrogen can be stored forever as long as the system integrity is maintained. However, liquid hydrogen is “use it or lose it” and will boil from system heat leak and build pressure unless it is used or vented. This is not usually an issue for continuous use or low-pressure applications which can use hydrogen gas pressure directly from the tank.
For intermittent or high…
Several organizations published a paper together on this topic in 2017 (see attached). Based on comparisons with tests and CFD simulations, the following conclusions were drawn:
There are two parts for such a system to be effective. First, the system would have to activate quickly enough to establish a water mist throughout the region of interest (i.e., region occupied by a flammable gas mixture) before it could be ignited. This is challenging in terms of timing, and the impact of spraying water inside an enclosure filled with equipment not designed to get wet can be…
Explosion testing with hydrogen should be utilized only where there is not an established alternative and then only by personnel experienced in such testing.
Testing with hydrogen is always a challenge and needs to be approached carefully due to significant differences in properties between hydrogen and propane. Hydrogen can develop significantly higher overpressures and preliminary…
The Panel has not received such inquiries. Section 14.2 of NFPA 69 Standard for Explosion Prevention Systems covers foam and mesh requirements. NFPA 69 states in 14.3.4 that the tests shall be conducted with a flammable gas/air mixture with a fundamental burning velocity representative of the burning velocities of flammable vapors expected in the intended applications.
I am communicating with a company that is exploring this technology for an application involving a mixture of flammable gases, including hydrogen.
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.