- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Contact
- About H2Tools
In laboratories, 316 stainless steel tubing is frequently the first choice for small flow and pressures less than 2800 psi (19 MPa). See Best Practices: Material Compatibility for hydrogen compatibility with various materials. Always work within manufacturer’s pressure ratings adjusted for temperature. Read and follow…
There are several resources that can help review designs, such as the Hydrogen Safety Panel and other outside consultants that are members of the Center for Hydrogen Safety.
See H2Tools, Best Practices: Purging, for a description of different purging approaches for hydrogen systems.
Electrolyzers should be installed per manufacturer recommendations and meet the criteria of their
listing, such as ISO 22734, Hydrogen generators using water electrolysis - Industrial, commercial, and
residential applications. There are several methods such as partitions, enclosures, ventilation, and
purging that can be used to address non-classified electrical equipment.
There are dozens of safety considerations for safe design of hydrogen vent stacks. Their primary function
is to vent the hydrogen safely, so vent stacks should be designed such that the gas dispersion and
radiation profile (if ignited) do not impact surrounding equipment, buildings, or people. Documents such
as CGA G5.5, Hydrogen Vent Systems, provide numerous details regarding design…
As with any high pressure gas, hydrogen vents can be very loud. Consideration must be given to the
surrounding population and special provisions can be taken to reduce the noise level of releases if
needed. When installed, care must be taken that the sound quieting system can withstand the
flow/pressure of the release and does not impede the required flow.
Each system must be evaluated individually, and it depends on the amount and location of possible
releases. Routing vent lines to a vent stack is the most common approach when venting directly to
atmosphere is not acceptable.
Vent stacks should always be grounded in accordance with electrical standards which will reduce the probability of, but not eliminate, vent stack fires. There are numerous design features, such as toroidal rings, that have been suggested to reduce vent stack fires. However, given the many sources of ignition that can potentially ignite vent stack releases, it is virtually impossible to…
The suitability of flame arrestors depends on the design of the system, but generally flame arrestors are
rarely needed for hydrogen systems when there is a 100% hydrogen atmosphere upstream of the vent,
and when the downstream vent system is designed to withstand internal ignition. Flame arrestors can
also cause potential blockage or restriction of flow, so relative risks need to be…
There is some indication that toroidal rings can reduce static buildup and ignition of hydrogen from a vent. However, while toroidal rings may help with static, they have not been proven to eliminate all static ignition sources. There are also other sources of ignition that they would not prevent, so they might reduce but not eliminate, vent stack fires. Another method that can be reliably…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.