Owner/operators of chemical processing and petroleum refining sites often ask whether unconfined hydrogen vapor cloud explosions (VCEs) can actually occur. This question normally arises during the course of a consequence-based facility siting study (FSS) or a quantitative risk assessment (QRA). While it is generally recognized that a hydrogen release within a process enclosure could lead to an explosion, the potential for an external hydrogen release to cause a VCE is not as widely recognized and is often questioned.
AS THE WORLD SEEKS TO IDENTIFY alternative energy sources, hydrogen-powered fuel cells offer a broad range of benefits for the environment, the economy, and energy security. Hydrogen fuel cells have the potential to replace the internal combustion engine and to provide power in a wide range of stationary and portable applications.
The Baker-Strehlow-Tang vapor cloud explosion (VCE) blast load prediction methodology utilizes flame speed as a measure of explosion severity. In previous publications, guidance has been presented for selecting flame speeds as a function of congestion, confinement, and fuel reactivity. These recommended values were based on empirical data available from the literature.
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.
Contact info
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.