Skip to main content
gradient background
Potential for Hydrogen DDT with Ambient Vaporizers
Author(s)
J.K. Thomas
J. Geng
O. Rodriguez
The ignition of a hydrogen-air mixture that has engulfed a typical set of ambient vaporizers (i.e., an array of finned tubes) may result in a deflagration-to-detonation transition (DDT). Simplified curve-based vapor cloud explosion (VCE) blast load prediction methods, such as the Baker-Strehlow-Tang (BST) method, would predict a DDT given that typical ambient vaporizerswould be rated as medium or high congestion and hydrogen is a high reactivity fuel (i.e., high laminar burning velocity).
Stockimage_gradient
Natural gas was first used as a vehicle fuel as far back as the 1930s. The first natural gas vehicles, which ran on uncompressed natural gas, were called “gas bag” vehicles and were used to combat gasoline shortages during World War I [1]. During and after World War II, compressed natural gas (CNG) vehicles using fuel tanks mounted on the roof gained popularity in France and Italy [2]. Today, there are more than 24 million CNG vehicles in service worldwide, including CNG buses that continue the early tradition of mounting fuel tanks on the roof.  
Stockimage_gradient
Qualified Individual for Liquid Hydrogen
Author(s)
Hydrogen Safety Panel
The HSP has reviewed many safety plans for gaseous hydrogen. An emerging trend is the use of liquid (cryogenic) hydrogen in the commercial market, potentially near residential areas, for fueling hydrogen fuel cell vehicles. Finding a “qualified” person to determine liquid hydrogen code compliance is difficult, and the skills necessary of such an individual are not well defined in the codes and standards.
Stockimage_gradient
Introduce the Hydrogen Safety Panel (HSP)Introduce key hydrogen safety resources that are availableOpen discussion on your hydrogen safety issues and needsExplore how the HSP can help the safe rollout of hydrogen and fuel cell technologiesIdentify projects that could utilize the HSP for impactful safety reviews
gradient background
Ammonia and hydrogen represent opposite ends of the spectrum with regard to the potential blast loading resulting from an accidental vapor cloud explosion (VCE), although many in industry have expressed doubts as to whether either of these fuels actually pose a VCE hazard. Ammonia is some-times discounted as a VCE hazard due to the perceived difficulty in igniting an ammonia-air mixture and/or because of its low laminar burning velocity. Hydrogen is sometimes discounted as a VCE hazard due to the ease with which a hydrogen-air mixture can be ignited and/or because of its buoy-ancy.
Stockimage_gradient
The purpose of this guide is to assist users of codes and standards that apply to hydrogen application and use in understanding and applying the approval, certification, listing, and labeling provisions of the codes and standards, in any application where the required certification, listing, and labeling of services, methods, or equipment has not yet been established or achieved.  
Stockimage_gradient
2017 Annual Progress Report
Author(s)
Hydrogen Safety Panel
VIII.6  Hydrogen Safety Panel, Safety Knowledge Tools and First Responder Training Resources
Disclaimer- The documents and references herein are for information purposes only and should not be construed as endorsement by the Hydrogen Safety Panel.
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts