Skip to main content
Abstract

This study examines the types of hydrogen leaks that can support combustion. Hydrogen, methane, and propane diffusion flames on round burners and leaky compression fittings were observed. Measurements included limits of quenching and blowoff for round burners with diameters of 0.006 - 3.18 mm. The measured mass flow rates at the quenching limits were found to be generally independent of burner diameter at relatively large burner diameters. In terms of mass flow rate, hydrogen had the lowest quenching limit and the highest blowoff limit of the fuels considered, which means that there are high and low flow rates where hydrogen is able to support a flame while methane and propane are not able to. The quenching limits for hydrogen diffusion flames on round burners with thick walls were found to be higher than for thin walls. The limits were also found to be independent of burner orientation; leaks with low flow rates are able to support flames independent of their orientation. The minimum mass flow rate of hydrogen that can support combustion from a leaking compression fitting was found to be 0.028 mg/s. This flow was independent of pressure (up to 131 bar) and about an order of magnitude lower than the corresponding methane and propane flow rates. The implications for fire safety are discussed.

Year of Publication
2008
Number of Pages
119-126
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts