Skip to main content
Abstract

Computational fluid dynamics (CFD) is used to numerically solve the sudden release of hydrogen from a high pressure tank (up to 70MPa) into air. High pressure tanks increase the risk of failure of the joints and pipes connected to the tank which results in release of Hydrogen. The supersonic flow caused by high pressure ratio of reservoir to ambient generates a strong Mach disk. A three dimensional in-house code is developed to simulate the flow. High pressure Hydrogen requires a real gas law because it deviates from ideal gas law. Firstly, Beattie-Bridgeman and Abel-Noble real gas equation of states are applied to simulate the release of hydrogen in hydrogen. Then Abel-Noble is implied to simulate the release of hydrogen in air. Beattie-Bridgeman has stability problems in the case of hydrogen in air. A transport equation is used to solve the concentration of Hydrogen-air mixture. The code is second order accurate in space and first order in time, and uses a modified Van Leer limiter. The fast release of Hydrogen from a small rupture needs a very small mesh, therefore parallel computation is applied to overcome memory problems and to decrease the solution time. The high pressure ratio of the reservoir to ambient causes a very fast release which is accurately modeled by the code and all the shocks and Mach disk happening are observed in the results. The results show that the difference between real gas and ideal gas models cannot be ignored.

Year of Conference
2009
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts