Skip to main content
Abstract

Mechanisms of dissolvent anodic chemical reaction and hydrogen embrittlement have been proposed as stress corrosion cracking (SCC) mechanisms. The former is feasible for the case of plastic deformation dominant metals (low-yield stress), and the latter is for high-strength metals such as high-strength steels. However, in spite of low-yield stress, a discontinuous cleavage-like fracture is sometimes observed during SCC for ductile fcc alloys, which concerns the interaction between dislocations and the hydrogen cluster. The problem of when these mechanisms will be dominant remains. In this paper, the stress corrosion cracking model on the basis of hydrogen diffusion and concentration toward the elastic-plastic stress field around a crack and the interaction of dislocations and hydrogen around a crack tip are proposed to clarify the mechanism of stress corrosion cracking for ductile and brittle materials. We conducted numerical analyses using these proposed models.

Year of Publication
2004
Journal
International Journal of Fracture
Volume
128
Start Page
121
Number of Pages
121-131
ISBN Number
0376-9429
DOI
10.1023/b:Frac.0000040974.59017.55
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts