Skip to main content
Abstract

Flame acceleration and deflagration to detonation transition (DDT) is simulated with a numerical code based on a flux limiter centered method for hyperbolic differential equations. The energy source term is calculated by a Riemann solver for the inhomogeneous Euler equations for the turbulent combustion and a two-step reaction model for hydrogen–air. The transport equations are filtered for large eddy simulation (LES) and the sub-filter turbulence is modelled by a transport equation for the turbulent kinetic energy. The flame tracking is handled by the
-equation for turbulent flames. Numerical results are compared to pressure histories from physical experiments. These experiments are performed in a closed, circular, 4 m long tube with inner diameter of 0.107 m. The tube is filled with hydrogen–air mixture at 1 atm, which is at rest when ignited. The ignition is located at one end of the tube. The tube is fitted with an obstruction with circular opening 1 m down the tube from the ignition point. The obstruction has a blockage ratio of 0.92 and a thickness of 0.01 m. The obstruction creates high pressures in the ignition end of the tube and very high gas velocities in and behind the obstruction opening. The flame experiences a detonation to deflagration transition DDT in the supersonic jet created by the obstruction. Pressure build-up in the ignition end of the tube is simulated with some discrepancies. The DDT in the supersonic jet is simulated, but there is a discrepancy in the time of the simulated DDT.

Year of Publication
2007
Journal
International Journal of Hydrogen Energy
Volume
32
Start Page
2186
Number of Pages
2186-2191
ISBN Number
03603199
DOI
10.1016/j.ijhydene.2007.04.006
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts