Skip to main content
Abstract

When using hydrogen gas as an ecofriendly energy sources, it is necessary to conduct a safety assessment and ensure thereliability of the hydrogen pressure vessel against hydrogen embrittlement expected in the steel materials. In this study, by applying the in-situ SP test method, the gas hydrogen embrittlement behaviors in SA372 steel, which is commonly used as a pressurized hydrogen gas storage container, were evaluated. To investigate the hydrogen embrittlement behavior,SP tests at different punch velocities were conducted for specimens with differently fabricated surfaces at atmospheric pressure and under high-pressure hydrogen gas conditions. As a result, the SA372 steel showed significant hydrogen embrittlement under pressurized hydrogen gas conditions. The effect of punch velocity on the hydrogen embrittlement appeared clearly; the lower punch velocity case indicated significant hydrogen embrittlement resulting in lower SP energy. The fractographic morphologies observed after SP test also revealed the hydrogen embrittlement behavior corresponding to the punch velocity adopted. Under this pressurized gas hydrogen test condition, the influence of specimen surface condition on the extent of hydrogen embrittlement could not be determined clearly. , . , in-situ SP SA372 . , SP . , SA372 . , SP . SP . .

Year of Publication
2013
Volume
37
Number of Pages
1497-1502
ISBN Number
1226-4873
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts