Skip to main content
Abstract

Spontaneous ignition resulting from the accidental release of high-pressure hydrogen is an important safety issue, and the self-ignition flame can eventually induce a jet flame. However, the links between the self-ignition flame inside a tube and an external jet flame are unclear. Hence, this paper presents a study on how the self-ignition flame transforms into the jet flame in the near-field region of the nozzle. Effects of release pressure and tube length are investigated. Changes in release conditions can lead to changes in the flow characteristics of the self-combustible jet at the nozzle. Results show that the difference in the flow parameters is manifested in three aspects, which directly contribute to the diversity of transition forms. The expansion processes and shock structure govern the flame transition. The expansion process consists of two typical stages, which lead to two different flame morphologies. Besides, the presence of discontinuous surfaces in the shock wave structure can cause the self-ignition flame to extinguish or reignition in some transition processes, resulting in the flame appearing in different zones during different transitions. Finally, five forms of flame transition are proposed and their formation reasons are analyzed. Dominant factors and links between different transitions are eventually identified. (c) 2022 Elsevier Ltd. All rights reserved.

Year of Publication
2022
Journal
Renewable Energy
Volume
196
Number of Pages
959-972
Type of Article
Article
ISBN Number
0960-1481
Accession Number
WOS:000854035200003
DOI
10.1016/j.renene.2022.06.153
Alternate Journal
Renew Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts