Skip to main content
Abstract

Flow around an inclined 5:2 prolate spheroid with the incidence angle alpha = 45 degrees is numerically investigated in a uniform shear flow. The Reynolds number based on the inflow center velocity U-c and the volume-equivalent sphere diameter D-e of the spheroid are considered at Re = 480, 600, 700, and 750. The non-dimensional shear rate K is ranged from 0 to 0.1. Five qualitatively different wake modes are observed, including a new mode characterized by multi-periodic shedding of hairpin vortices with regular rotation of the separation region. In general, the wake transition is suppressed with increasing shear rate. At high shear rates, the flow even reverts from unsteady to steady state at Re = 480, which we attributed to the reduction of the local Reynolds number at the leading-edge side of the spheroid. The time-averaged drag/lift coefficients and the Strouhal number increase with increasing the shear rate and the Reynolds number (except for K = 0). Finally, the effect of a sign-change of the incidence angle of the prolate spheroid on wake evolution is investigated. A physical exploration of the effect of the sign of the incidence angle and the amount of inlet shear is provided to give deeper insight into the physical mechanisms acting in the wake behind inclined non-axisymmetric bluff bodies in a shear flow. Published under an exclusive license by AIP Publishing.

Year of Publication
2022
Journal
Physics of Fluids
Volume
34
Number of Pages
21
Type of Article
Article
ISBN Number
1070-6631
Accession Number
WOS:000793749300002
Alternate Journal
Phys Fluids
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts