Skip to main content
Abstract

Detailed explanation and reliable quantification of the numerous degradation mechanisms contained in solid oxide fuel cells (SOFCs) are key issues to improve their durability. Although electrochemical impedance spectroscopy (EIS) has been widely used to unfold the complex and coupled physical/chemical processes, there are still some concerns with respect to the measurement and analysis procedures. In this study, an industrial-size cell (10 x 10 cm(2)) is tested to clarify the evolution of electrochemical characteristics during initial-stage operation, including 5 h of anode reduction, 32 h of activation process and 40 h of initial aging process. Detailed analysis of EIS measured under different DC bias is implemented through distribution of relaxation times (DRT) and subsequent equivalent circuit model (ECM) fitting to identify the contributions of individual processes to the rapid performance degradation during initial aging process. It is found that the deterioration of anode charge transfer reactions and ionic transport jointly causes more than 60% of the voltage degradation, followed by the O-2 surface exchange kinetics coupled with O2- diffusion (17.3%), and then the anode gas conversion (13%). The microstructure deterioration of anode/electrolyte interface caused by Ni redistribution is regarded as the dominant degradation mechanism during initial aging process. A fast Ni migration mechanism is proposed to explain the observable Ni depletion in the anode functional layer, which is verified by detailed post-test characterization.

Year of Publication
2021
Journal
Journal of Power Sources
Volume
510
Number of Pages
11
Type of Article
Article
ISBN Number
0378-7753
Accession Number
WOS:000696945900005
Alternate Journal
J Power Sources
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts