Skip to main content
Abstract

The present study aims to obtain further understandings of vertical flame spreading phenomena by analysing the influences of soot and individual heat flux components on PMMA walls using large eddy simulation. Total heat flux consists of convective and radiative components, but it is not clear which one has a significant role in fire spread. The computational code used is an in-house version of FireFOAM 2.2.x, which has recently undergone specific development and validation for flame spread studies by the authors. The present study has conducted numerical simulations for flame spread and full wall fire configurations. By scale-up of the PMMA size from 0.4 to 1.0 m, the convective heat flux decreased by 41.4% at the location of the pyrolysis front, radiative heat flux increased by 86.9%, and radiative heat flux due to soot grew by 215.2%. As the pyrolysis height increases from 0.3 to 1.0 m, the convective heat flux decreased by 26.8% at the location of the pyrolysis front. The radiative heat flux increased by 96.8%, and its components of combustion of the gaseous fuel and soot grew by 55.9% and 233.3%, respectively. Moreover, the ratio of radiative heat flux to total heat flux increased by 66.5%, and that of soot to radiative heat flux grew by 73.9%. The contribution of soot to radiative heat flux almost linearly increased against the pyrolysis height and that was higher at a higher pyrolysis height.

Year of Publication
2021
Journal
Journal of Thermal Analysis and Calorimetry
Volume
147
Start Page
4645
Number of Pages
4645-4665
Type of Article
Article
ISBN Number
1388-6150
1588-2926
Accession Number
WOS:000653617900004
DOI
10.1007/s10973-021-10791-6
Alternate Journal
J. Therm. Anal. Calorim.
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts