Skip to main content
Abstract

Safety management of hydrogen infrastructure is vital for sustainable progress in the hydrogen economy. Accordingly, this paper presents a dynamic and holistic risk model to address some significant shortcomings of the current hydrogen risk analysis models. The hydrogen release scenarios are modeled using the Bow-tie technique integrated with improved D Numbers Theory and Best-Worst Method. This helps to analyze epistemic uncertainty in the prior probabilities of the causation factors and barriers. Subsequently, a Dynamic Bayesian Network (DBN) model is developed to analyze dynamic risk and deal with aleatory uncertainty. The application of the proposed model is demonstrated on a water electrolysis process. The results of the case study provide a better understanding of the causal modeling of accident scenarios, associated evolving risks with uncertainty. The proposed model will serve as a useful tool for the operational safety management of the hydrogen infrastructure or other complex engineering systems. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2021
Journal
International Journal of Hydrogen Energy
Volume
46
Number of Pages
4626-4643
Type of Article
Article
ISBN Number
0360-3199
Accession Number
WOS:000607190300001
DOI
10.1016/j.ijhydene.2020.10.191
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts