Skip to main content
Abstract

A novel mitigation system against hydrogen-air deflagrations in nuclear power plant buildings is proposed and developed through a series of field experiments using explosion vessels of different volume sizes. The mitigation system is installed on the outer surface of the vessels, and it comprises flame arrester and explosion air bag. The flame arrester is made by stacking 10-20 sheets of fine-mesh wire screens, and the air bag is connected for holding explosion gas. The successful mitigation mechanism is the sequence of pressure-rise reduction by the air bag expansion, flame quenching by the flame arrester, and the slow burning of the gas mixture sucked from the air bag back into the vessel due to the negative pressure caused by the rapid condensation of water vapor inside the vessel. Necessary conditions for the successful mitigation system are discussed, and the practical unit size of flame arrester sheet is recommended.

Year of Publication
2019
Journal
Journal of Loss Prevention in the Process Industries
Volume
60
Number of Pages
9-16
Type of Article
Article
ISBN Number
0950-4230
Accession Number
WOS:000476963600002
DOI
10.1016/j.jlp.2019.03.011
Alternate Journal
J Loss Prevent Proc
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts