Skip to main content
Abstract

Vented deflagrations are one of the most challenging phenomenon to be replicated numerically in order to predict its resulting pressure time history. As a matter of fact a number of different phenomena can contribute to modify the burning velocity of a gas mixture undergoing a deflagration, especially when the flame velocity is considerably lower than the speed of sound. In these conditions acceleration generated by both the flow field induced by the expanding flame and from discontinuities, as the vent opening and the venting of the combustion products, affect the burning velocity and the burning behavior of the flame. In particular the phenomena affecting the pressure time history of a deflagration after the flame front reaches the vent area, such as flame acoustic interaction and local pressure peaks, seem to be closely related to a change in the burning behavior induced by the venting process. Flame acoustic interaction and local pressure peaks arise as a consequence of the change in the burning behavior of the flame. This paper discuss the analysis of the video recording of the flame front produced during the TP experimental campaign, performed by UNIPI in the project HySEA, to describe qualitatively the contribution of the generated flow field in a vented deflagration and its influence in the peaks of the pressure-time history. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2019
Journal
International Journal of Hydrogen Energy
Volume
44
Number of Pages
9080-9088
Type of Article
Article; Proceedings Paper
ISBN Number
0360-3199
Accession Number
WOS:000463689300039
DOI
10.1016/j.ijhydene.2018.05.007
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts