The paper present the work on PIV-measurements of reactant flow velocity in front of propagating flames in hydrogen-air explosions. The experiments was performed with hydrogen-air mixture at atmospheric pressure and room temperature. The experimental rig was a square channel with 45 x 20 mm(2) cross section, 300 mm long with a single cylindrical obstacle of blockage ratio 1/3. The equipment used for the PIV-measurements was a Firefly diode laser from Oxford lasers, Photron SA-Z high-speed camera and a particle seeder producing 1 mu m droplets of water. The gas concentrations used in the experiments was 14 and 17 vol% hydrogen in air. The resulting explosion can be characterized as slow since the maximum flow velocity of the reactants was 13 m/s in the 14% mixture and 23 m/s in the 17% mixture. The maximum flow velocities was measured during the flame-vortex interaction and at two obstacle diameters behind the obstacle. The flame-vortex interaction contributed to the flame acceleration by increasing the overall reaction rate and the flow velocity. The flame area as a function of position is the same for both concentrations as the flame passes the obstacle. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
H2Tools
Bibliography
Discover the sources that fuel your curiosity.