Skip to main content
Abstract

Experimental and numerical investigation of hydrogen-air and hydrogen-oxygen detonation parameters was performed. A new detonation model was introduced and validated against the experimental data. Experimental set-up consisted of 9 m long tube with 0.17 m in diameter, where pressure was measured with piezoelectric transducers located along the channel. Numerical simulations were performed within OpenFoam code based on progress variable equation where the detonative source term accounts for autoignition effects. Autoignition delay times were computed at a simulation run-time with the use of a multivariate regression model, where independent variables were: pressure, temperature and fuel concentration. The dependent variable was the autoignition delay time. Range of the analyzed gaseous mixture composition varied between 20% and 50% of hydrogen-air and 50%-66% of hydrogen in oxygen. Simulations were performed using LES one equation eddy viscosity turbulence model in 2D and 3D. Calculations were validated against experimental data. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2019
Journal
International Journal of Hydrogen Energy
Volume
44
Number of Pages
8743-8750
Type of Article
Article; Proceedings Paper
ISBN Number
0360-3199
Accession Number
WOS:000463689300007
DOI
10.1016/j.ijhydene.2018.04.161
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts