Skip to main content
Abstract

The topic of hydrogen safety assessment has been focused by many researchers. The overpressure evaluation of vapor cloud explosion (VCE), is an important issue for both designing and evaluating on chemical plants, as well as buildings. Unknown flame radius history limits the original acoustic approximation model's application. The objective of this work is to develop an achievable model for hydrogen/air deflagration assessment in engineering applications, and the model should have high computational efficiency. A tentative scheme that starts from flame/piston speed history solving was adopted, and the flame/piston radius and acceleration history will be obtained subsequently. Thus, the overpressure history for far field could be gotten based on the acoustic approximation model. A simplified scheme was employed for the region inside the flame cloud. The model proposed in this paper could be solved in several seconds, because there are no differential equations but only algebraic equations. The model was verified by hydrogen/air deflagration tests from small scale to large scale. Compared with the experimental data, the model appeared well agreements in the medium and large scale cases. In the small scale cases, the model obtained acceptable solutions. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2018
Journal
International Journal of Hydrogen Energy
Volume
43
Number of Pages
10193-10204
Type of Article
Article
ISBN Number
0360-3199
Accession Number
WOS:000433645400026
DOI
10.1016/j.ijhydene.2018.04.041
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts