Skip to main content
Abstract

Monitoring hydrogen levels in radioactive environments is important in nuclear energy safety and space study because leakage of this gas can cause destructive detonation. Herein, hydrogen gas sensing devices were fabricated by using a simple design of a planartype structure sensor containing a SnO2 thin film sensitized with microsized Pd islands. In addition, the effects of gamma irradiation on sensor performance were investigated and results revealed that low doses of gamma irradiation had ignorable effect on the sensing performance of the device. However, a relatively high dose of gamma irradiation improved the sensitivity of the device because of oxygen defect generation. The enhancement of hydrogen gas-sensing characteristics was correlated with microstructure and optical characterization. Results show that gamma irradiation induced defects in the SnO2 thin film, controlling the doping level, and thus enhancing the gas-sensing characteristic of the device. The sensor can be used for monitoring hydrogen gas at low concentrations of 50 ppm-500 ppm, with fast response and recovery time, making it suitable for potential safety applications in monitoring hydrogen levels in radioactive environments. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2015
Journal
International Journal of Hydrogen Energy
Volume
40
Number of Pages
12572-12580
ISBN Number
0360-3199
Accession Number
WOS:000361411600054
DOI
10.1016/j.ijhydene.2015.07.070
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts