Skip to main content
Abstract

A finite element analysis is performed on the heat transfer process across the tank walls to determine the temperature distributions of hydrogen storage tanks during fast filling. The accuracy of the numerical model is shown by comparison between the experimental measurements and the computed results. A sensitivity analysis of the tank wall thermal conductivity, specific heat capacity, density and heat transfer coefficient between the tank's external surface and the ambient air is carried out and the resulting effects are described. The properties of the tank's composite layer have a larger effect on the temperature history on the tank external surface than the properties of the plastic liner. The heat transfer coefficient between the tank's external surface and the environment has a negligible effect during the filling but a significant impact during the holding time. Increasing the liner thickness significantly decreases the temperature in the composite layer. Copyright (C) 2015, The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications, LLC.

Year of Publication
2015
Journal
International Journal of Hydrogen Energy
Volume
40
Number of Pages
12560-12571
ISBN Number
0360-3199
Accession Number
WOS:000361411600053
DOI
10.1016/j.ijhydene.2015.06.114
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts