Skip to main content
Abstract

Most of the numerical benchmarks on combustion in large scale volumes for hydrogen safety, which were performed up until today have demonstrated, that current numerical codes and physical models experience poor predictive capabilities at the industrial scale, both due to under-resolution and deficiencies in combustion modeling. This paper describes a validation of the EUROPLEXUS code against several large scale experimental data sets in order to improve its hydrogen combustion modeling capabilities in industrial settings (e.g. reactor buildings). The code is based on the Euler equations and employs an algorithm for the propagation of reactive interfaces, RDEM, which includes a combustion wave, as an integrable part of the Reactive Riemann problem, propagating with a fundamental flame speed (being a function of initial mixture properties as well as gas dynamics parameters). Validation of the first combustion model implemented in the code is based on obstacle-laden channels, interconnected reactor-type compartments, vented enclosures and covers all major premixed flame combustion regimes (slow, fast and detonation) with an aim to obtain conservative results. An improvement of this model is found in a direction of transient interaction of flame fronts with regions of elevated integral length scales presented in the velocity gradient field due to e.g. interactions with geometrical non-uniformities and pressure waves. (c) 2015 Elsevier Ltd. All rights reserved.

Year of Publication
2015
Journal
Journal of Loss Prevention in the Process Industries
Volume
35
Number of Pages
104-116
ISBN Number
0950-4230
Accession Number
WOS:000357224100012
DOI
10.1016/j.jlp.2015.03.014
Alternate Journal
J Loss Prevent Proc
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts