Skip to main content
Abstract

Neutron radiography (NR) is performed at the Institute for Energy Technology (IFE) in Norway since the late 1970s. The application of the non-destructive method was to acquire post-irradiation examination (PIE) data (e.g. fuel integrity and hydrogen up-take in cladding) from safety and integrity tests of nuclear fuels performed under the Organization for Economic Co-operation and Development (OECD) Halden Reactor Project (HRP). The method was later applied under re-fabrication and instrumentation operations of experimental nuclear fuel rods prior to testing in Halden Boiling Water Reactor (HBWR), and for a variety of PIE projects, e.g. reactor power ramp testing, PCI failure detection and fuel degradation experiments. Neutron radiography has also proved to be a very useful tool for examination of nuclear fuels irradiated in the Loss-of-Coolant Accident (LOCA) experimental series initiated in the early 2000s. Neutron tomography data is acquired while an increased international focus arose on fuel fragmentation, fuel relocation and fuel dispersal processes that occur during the LOCA events for high burn-up nuclear fuels. Hydrogen up-take of the fuel cladding, fuel pellet-clad bonding condition, fuel fragmentation, particle size distributions, and other features obtained from neutron tomography data are quite relevant for reactor core safety impact study of LOCA events simulated in the HBWR. Neutron tomography studies of LOCA tested fuel were done in cooperation with the SCK CEN institute in Mol, Belgium, and the University of Antwerp in Belgium. It's interesting to observe that the image reconstruction results obtained from the SART method are quite good regarding the relatively few sample rotations utilized under acquisition of neutron radiography projections in the tomography studies of the LOCA examination. (C) 2013 Elsevier Ltd. All rights reserved.

Year of Publication
2014
Journal
Progress in Nuclear Energy
Volume
72
Number of Pages
55-62
ISBN Number
0149-1970
Accession Number
WOS:000337651400012
DOI
10.1016/j.pnucene.2013.11.001
Alternate Journal
Prog Nucl Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts