Skip to main content
Abstract

The effect of hydrogen admixing on self-ignition of homogeneous and hybrid mixtures of heavy hydrocarbons in air is studied theoretically based on the detailed reaction mechanism of n-decane oxidation. Reactivity of hydrogen-containing mixtures is not always higher than that of pure hydrocarbon-air mixtures. At temperatures less than similar to 1050 K, addition of hydrogen to such mixtures increases the self-ignition delay: hydrogen acts as an inhibitor. With the increase of hydrogen content the duration of the blue-flame reaction stage becomes shorter and even degenerates. This is caused by reactions of hydrogen with intermediate products of hydrocarbon oxidation leading to formation of less active species hindering chain branching processes. At temperatures exceeding similar to 1050 K, hydrogen addition decreases the overall self-ignition delay thus indicating that hydrogen acts as a promoter. These finding have to be taken into account when discussing perspectives of practical applications of fuels blended with hydrogen as well as related explosion safety issues. Copyright (c) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2013
Journal
International Journal of Hydrogen Energy
Volume
38
Number of Pages
4177-4184
ISBN Number
0360-3199
Accession Number
WOS:000316714200038
DOI
10.1016/j.ijhydene.2013.01.075
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts