Skip to main content
Abstract

Spontaneous ignition of a pressurized hydrogen release has important implications in the risk assessment of hydrogen installations and design of safety measures. In real accident scenarios, an obstacle may be present close to the release point. Relatively little is known about the effect of such an obstacle on the salient features of highly under-expanded hydrogen jets and its spontaneous ignition.
In the present study, the effect of a thin flat obstacle on the spontaneous ignition of a direct pressurized hydrogen release is investigated using a 5th-order WENO scheme and detailed chemistry. The numerical study has revealed that, for the conditions studied, the presence of the obstacle plays an important role in quenching the flame following spontaneous ignition for the release conditions considered. (c) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2011
Journal
International Journal of Hydrogen Energy
Volume
36
Number of Pages
2637-2644
ISBN Number
0360-3199
Accession Number
WOS:000288825800092
DOI
10.1016/j.ijhydene.2010.03.143
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts