Temperature increase during hydrogen fueling process is a significant safety concern of a high pressure hydrogen vessel. Hence, thermal characteristics of a Type IV cylinder during hydrogen filling process need to be understood.
In this study, a series of experiments were conducted to quantify the temperature change of the cylinder during hydrogen filling to 35 MPa. Computational fluid dynamics (CFD) analysis was also conducted to simulate the conditions of the experiments. The results predicted by the CFD analysis show reasonable agreement with the experiments and the discrepancy between the CFD results and experimental results decrease with higher initial gas pressures. The upper and the lower parts of the vessel showed a temperature difference in the vertical direction. The upper gas temperature was higher than that of the lower part due to the buoyancy effect in the vessel. The maximum gas temperature was higher than the maximum temperature allowed in the ISO safety code (85 degrees C) for the case in which the vessel was pressurized from 0 MPa to 35 MPa. This work contributes to the understanding of the thermal flow characteristics of the hydrogen filling process and notes that additional efforts should be made to guarantee the safety of a type IV cylinder during the hydrogen fueling process. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
H2Tools
Bibliography
Discover the sources that fuel your curiosity.