Skip to main content
Abstract

The time and space evolution of the distribution of hydrogen in confined settings was investigated computationally and experimentally for permeation from typical compressed gaseous hydrogen (CGH2) storage systems for buses or cars. The main goal was to examine whether hydrogen is distributed homogeneously within a garage-like facility or whether stratified conditions are developed, under certain conditions. The nominal hydrogen flow rate considered was 1.087 L/min in a bus facility with a volume of 681 m(3). The release was assumed to be directed upwards from a 0.15 m diameter hole located at the middle part of the bus cylinders casing. Ventilation rates up to 0.03 air changes per hour (ACH) were considered. Simulated time periods extended up to 20 days. The CFD simulations performed with the ADREA-HF code showed that fully homogeneous conditions exist for low ventilation rates, while stratified conditions prevail for higher ventilation rates. Regarding flow structure it was found that the vertical concentration profiles can be considered as the superposition of the concentration at the floor (driven by diffusion) plus a concentration difference between floor and ceiling (driven by buoyancy forces). In all cases considered this concentration difference was found to be less than 0.5%. The dispersion experiments were performed in a large scale garage-like enclosure of 40 m(3) using helium (GARAGE facility). Comparison between CFD simulations and experiments showed that the predicted concentrations were in good agreement with the experimental data. Finally, simulations were performed using two integral models: the fully homogeneous model and a two-layer model and the results were compared both against CFD and the experimental data. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2010
Journal
International Journal of Hydrogen Energy
Volume
35
Number of Pages
3848-3856
ISBN Number
0360-3199
Accession Number
WOS:000277463600077
DOI
10.1016/j.ijhydene.2010.01.135
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts