Skip to main content
Abstract

Safety of hybrid-electric and fuel cell vehicles is a critical aspect of these new technologies, since any accident exposing occupants of such vehicles to unconventional hazards may result in significant setbacks to successful market penetration. Fuel cell and hybrid-electric drive systems are complex, and it is essential to perform a thorough analysis to determine critical failure conditions. There are several safety concerns for routine operation of such systems, particularly for hydrogen-fueled vehicles. A modified Failure Modes and Effect Analysis (FMEA) has been developed, along with a Criticality Analysis (CrA), to identify potentially hazardous conditions for crash and non-crash situations. A mathematical model of fuel cell operation has been developed and used here in conjunction with the FMEA. Component failures during the event modes are simulated using vehicle models developed with Matlab Simulink tools. Six simulation models were created using the software. In addition, a preliminary finite element model of a fuel cell vehicle, using a Ford Taurus (91') model year sedan, has been developed and implemented. This finite element model is used as a demonstration of the crash Simulation of the vehicle.

Year of Publication
2009
Journal
International Journal of Automotive Technology
Volume
10
Number of Pages
743-752
ISBN Number
1229-9138
Accession Number
WOS:000272348900012
DOI
10.1007/s12239-009-0087-0
Alternate Journal
Int J Automot Techn
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts