Skip to main content
Abstract

Two hydrogen production processes, both powered by Next Generation Nuclear Plant (NGNP), are currently under investigation at the Idaho National Laboratory and University of Idaho. The first is high temperature steam electrolysis utilizing both heat and electricity, and the second is thermo-chemical production through the sulfur iodine process which primarily utilizes heat. Both processes require high temperature (>850 degrees C) for enhanced efficiency; temperatures indicative of NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100m. There are several options to transferring multi-megawatt thermal power over such a distance. one of the options is two-phase heat transfer utilizing a high temperature thermosyphon. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. A thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. This paper addresses the engineering design elements of an industrial-scale (50 MW), high temperature controllable thermosyphon for NGNP process heat transfer. Although several different working fluids are under consideration, alkali metals are used herein as reference fluids to illustrate elements of design. Published by Elsevier B.V.

Year of Publication
2009
Journal
Nuclear Engineering and Design
Volume
239
Number of Pages
2293-2301
ISBN Number
0029-5493
Accession Number
WOS:000271361100008
DOI
10.1016/j.nucengdes.2009.06.022
Alternate Journal
Nucl Eng Des
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts