Skip to main content
Abstract

The dynamics of the dispersion of a fixed mass of the highly buoyant hydrogen when exposed to overlaying atmosphere with a negligible pressure difference from open vertical cylindrical enclosures are examined. Features of the rapid formation and dispersion of flammable mixtures both inside and immediate outside of the enclosure and their corresponding propagation rates were examined using a 3-D CFD model. For the cases considered, the puffs of the fuel-air mixture appear to produce lean flammable boundaries that move mainly at a near constant rate for much of the time. A similar simulation that used an axis-symmetrical 2-D model tended to under-predict the dynamics of the lean and rich mixture boundaries. Hydrogen plume characteristics were compared with that of the less buoyant methane and helium release. Unlike methane, helium propagation rate was found fairly close to that of hydrogen. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2009
Journal
International Journal of Hydrogen Energy
Volume
34
Number of Pages
6568-6579
ISBN Number
0360-3199
Accession Number
WOS:000269561000061
DOI
10.1016/j.ijhydene.2009.05.123
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts