Skip to main content
Abstract

During an accidental release, hydrogen disperses very quickly in air due to a relatively high density difference. A comprehensive understanding of the transient behavior of hydrogen mixing and the associated flammability limits in air is essential to support the fire safety and prevention guidelines. In this study, a buoyancy diffusion computational model is developed to simultaneously solve for the complete set of equations governing the unsteady flow of hydrogen. A simple vertical cylinder is considered to investigate the transient behavior of hydrogen mixing, especially at relatively short times, for different release scenarios: (i) the sudden release of hydrogen at the cylinder bottom into air with open, partially open, and closed tops, and (ii) small hydrogen jet leaks at the bottom into a closed geometry. Other cases involving the hydrogen releases/leaks at the cylinder top are also explored to quantify the relative roles of buoyancy and diffusion in the mixing process. The numerical simulations display the spatial and temporal distributions of hydrogen for all the configurations studied. The complex flow patterns demonstrate the fast formation of flammable zones with implications in the safe and efficient use of hydrogen in various applications. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2009
Journal
International Journal of Hydrogen Energy
Volume
34
Number of Pages
2824-2833
ISBN Number
0360-3199
Accession Number
WOS:000265425600036
DOI
10.1016/j.ijhydene.2009.01.021
Alternate Journal
Int J Hydrogen Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts