Author
Abstract

This study presents a method for the design of a hydrogen infrastructure system including production, storage and transportation of hydrogen. We developed a generic optimization-based model to support the decision-making process for the design of the hydrogen supply chain. The network design problem is formulated as a mixed integer linear programming (MILP) problem to identify the optimal supply chain configurations from various alternatives. The objective is to consider not only cost efficiency, but also safety. Since there is a trade-off between these two objectives, formal multiobjective optimization techniques are required to establish the optimal Pareto solutions that can then be used for decision-making purposes. With the model, the effects of demand uncertainty can be also analyzed by comparing the deterministic and the stochastic solutions. The features and capabilities of the model are illustrated through the application of future hydrogen infrastructure of Korea. The optimal Pareto solutions utilize both cost-oriented and safety-oriented strategies. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Year of Publication
2008
Journal
International Journal of Hydrogen Energy
Volume
33
Number of Pages
5887-5896
ISBN Number
0360-3199
Accession Number
WOS:000261115300004
DOI
10.1016/j.ijhydene.2008.07.028
Alternate Journal
Int J Hydrogen Energ
Download citation