Skip to main content
Author
Abstract

Reaction-rate parameters are given for the detailed chemistry of gas-phase hydrogen combustion, involving 21 reversible elementary steps. It is indicated that, when attention is restricted to specific combustion processes and particular conditions of interest, fewer elementary steps are needed. In particular, for calculating autoignition times over a wide range of pressures for temperatures between about 1000 and 2000 K, five irreversible elementary steps suffice, yielding a remarkable reduction in complexity. It is explained that, from a, mathematical viewpoint, in terms of global reaction-kinetic mechanisms, the hydrogen-oxygen system in principle comprises only six overall steps. Rational reduced chemical mechanisms for hydrogen combustion therefore necessarily must have fewer than six overall steps. For autoignition over the range of conditions specified above, ignition times can be determined accurately by considering, in addition to an elementary initiation step and an elementary termination step, at most three overall steps for reaction intermediaries, which reduce to two for very fuel-lean conditions and to one for stoichiometric or fuel-rich conditions. The resulting reductions can simplify computations that need to be performed in risk analyses for hydrogen storage and utilization. (C) 2007 Elsevier Ltd. All rights reserved.

Year of Publication
2008
Journal
Journal of Loss Prevention in the Process Industries
Volume
21
Number of Pages
131-135
ISBN Number
0950-4230
Accession Number
WOS:000254766300002
DOI
10.1016/j.jlp.2007.06.002
Alternate Journal
J Loss Prevent Proc
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts