Skip to main content
Author
Abstract

The Advanced High-Temperature Reactor is a new reactor concept that combines four existing technologies in a new way: (1) coated-particle graphite-matrix nuclear fuels (traditionally used for helium-cooled reactors), (2) Brayton power cycles, (3) passive safety systems and plant designs from liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants with boiling points far above the maximum coolant temperature. The new combination of technologies enables the design of a large [2400- to 4000-MW(t)] high-temperature reactor, with reactor-coolant exit temperatures between 700 and 1000 C (depending upon goals) and passive safety systems for economic production of electricity or hydrogen. The AHTR [2400-MW(t)] capital costs have been estimated to be 49 to 61% per kilowatt (electric) relative to modular gas-cooled [600-MW(t)] and modular liquid-metal-cooled reactors [1000-MW(t)], assuming a single AHTR and multiple modular units with the same total electrical output. Because of the similar fuel, core design, and power cycles, about 70% of the required research is shared with that for high-temperature gas-cooled reactors. (C) 2005 Elsevier Ltd. All rights reserved.

Year of Publication
2005
Journal
Progress in Nuclear Energy
Volume
47
Number of Pages
32-43
ISBN Number
0149-1970
Accession Number
WOS:000231675300006
DOI
10.1016/j.pnucene.2005.05.002
Alternate Journal
Prog Nucl Energ
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts