Skip to main content
Abstract

Comparisons of inflow conditions for large-eddy simulations of turbulent, wall-bounded flows are carried out. Consistent with previous investigations, it is found that the spectral content of the inflow velocity is important. Inflow conditions based on random-noise, or small-scale eddies only, dissipate quickly. Temporal and spatial filtering of a time series obtained from a separate calculation indicates that it is important to capture eddies of dimensions equal to or larger than the integral length scale of the flow. Three methods for generating inflow velocity fields are tested in a simulation of spatially developing turbulent channel flow. Synthetic turbulence generation methods that introduce realistic length scales are more suitable than uncorrelated random noise, but still require fairly long development lengths before realistic turbulence is established. A recycling method based on the use of turbulent data obtained from a separate calculation, in different flow conditions, was found to result in more rapid transition. A forcing method that includes a control loop also appears to be effective by generating turbulence with the correct Reynolds stresses and correlations within less than ten channel half heights. (C) American Institute of Physics.

Year of Publication
2004
Journal
Physics of Fluids
Volume
16
Number of Pages
4696-4712
ISBN Number
1070-6631
Accession Number
WOS:000225199200040
DOI
10.1063/1.1811672
Alternate Journal
Phys Fluids
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts