Skip to main content
Abstract

Numerical simulation of combustion phenomena such as flashback involves complex interactions between acoustics, turbulence, and combustion. An approach is proposed which combines a large eddy simulation (LES) technique with an adapted flame representation for premixed combustion. The standard Smagorinsky model is used for the subgrid closure. The flame is artificially thickened so that it can be resolved on the LES mesh. Two-dimensional nonreactive computations are first performed in a backward facing step configuration. Spectral analysis of the pressure and velocity signals recorded during the calculations are compared with experimental results. The mechanism of flashback linked to combustion instabilities in a sudden expansion configuration is then investigated. The effects of the instabilities are simulated by imposing an external velocity modulation at the entrance of the computational domain. Two cases are discussed which illustrate the dynamics of the flame. Upstream propagation is observed in response to strong flow perturbations. (C) 1998 by The Combustion Institute.

Year of Publication
1998
Journal
Combustion and Flame
Volume
113
Number of Pages
53-65
ISBN Number
0010-2180
Accession Number
WOS:000071900700005
DOI
10.1016/S0010-2180(97)00196-X
Alternate Journal
Combust Flame
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts