The paper describes CFD modelling of lean hydrogen mixture deflagrations. Large eddy simulation (LES) premixed combustion model developed at the University of Ulster to account phenomena related to large-scale deflagrations was adjusted specifically for lean hydrogen-air flames. Experiments by Kumar (2006) on lean hydrogen-air mixture deflagrations in a 120 m3 vessel at initially quiescent conditions were simulated. 10%2by volume hydrogen-air mixture was chosen for simulation to provide stable downward flame propagation; experiments with the smallest vent area 0.55 m2 were used as having the least apparent flame instabilities affecting the pressure dynamics. Deflagrations with igniter located centrally, near vent and at far from the vent wall were simulated. Analysis of simulation results and experimental pressure dynamics demonstrated that flame instabilities developing after vent opening made the significant contribution to maximum overpressure in the considered experiments. Potential causes of flame instabilities are discussed and their comparative role for different igniter locations is demonstrated.
H2Tools
Bibliography
Discover the sources that fuel your curiosity.