The testing provided data to allow the ability of Computational Fluid Dynamics (CFD) modelling to predict accumulation of natural gas from transient releases and temporal and spatial variations in explosion loading. Strain and pressure data was also gained on the structural response to allow assessment of structural modelling.
Large-scale deflagration and detonation experiments of hydrogen and air mixtures provide fundamental data needed to address accident scenarios and to help in the evaluation and validation of numerical models such as the AutoReaGas code (used by Mitsubishi Heavy Industries, Ltd). Several different experiments of this type were performed. Measurements included flame-front time of arrival (TOA) using ionization probes, blast pressure, heat flux, high-speed video, standard video, and infrared video.
In collaboration with Parker Hannifin Corporation, the Fire Safety Branch of the FAA conducted testing to evaluate the effects of three potential failure conditions of hydrogen proton exchange (or polymer electrolyte) membrane fuel cell stacks supplied by Nuvera Fuel Cells. The three conditions examined were a loss of coolant to the stack, short circuit, and a crossflow condition.