Analysis of transient supersonic hydrogen release, dispersion and combustion

A hydrogen leak from a facility, which uses highly compressed hydrogen gas (714 bar, 800 K) during operation was studied. The investigated scenario involves supersonic hydrogen release from a 10 cm2 leak of the pressurized reservoir, turbulent hydrogen dispersion in the facility room, followed by an accidental ignition and burn-out of the resulting H2-air cloud. The objective is to investigate the maximum possible flame velocity and overpressure in the facility room in case of a worst-case ignition. The pressure loads are needed for the structural analysis of the building wall response.

Physics of Spontaneous Ignition of High Pressure Hydrogen Release and Transition to Jet Fire

The main objective of this study is an insight into physical phenomena underlying spontaneous ignition of hydrogen at sudden release from high pressure storage and its transition into the sustained jet fire. This paper describes modelling and large eddy simulation (LES) of spontaneous ignition dynamics in a tube with a rupture disk separating high pressure hydrogen storage and the atmosphere. Numerical experiments carried out by a LES model have provided an insight into the physics of the spontaneous ignition phenomenon.

Blast Wave From Hydrogen Storage Rupture in a Fire

This study addresses one of knowledge gapsin hydrogen safety science and engineering, i.e. apredictive model for calculation of deterministic separation distancesdefined bythe parameters ofa blast wave generated by a high-pressure gasstorage tank rupture in a fire. An overview of existing methods to calculate stored in a tank internal(mechanical) energy anda blast wave decayis presented.

Subscribe to hydrogen