Hydrogen and Fuel Cells are Coming… Are You Ready?

Nick Barilo
PNNL Hydrogen Safety Program Manager
IAFC/USFA Webinar - September 15, 2015
PNNL Hydrogen Safety Program

Hydrogen Safety Panel
- Identify Safety-Related Technical Data Gaps
- Review Safety Plans and Project Designs
- Perform Safety Evaluation Site Visits
- Provide Technical Oversight for Other Program Areas

Safety Knowledge Tools and Dissemination
- Hydrogen Lessons Learned
- Hydrogen Best Practices
- Hydrogen Tools (iPad/iPhone mobile application)
- Hydrogen Tools Portal (http://h2tools.org)

Hydrogen Safety First Responder Training
- Online Awareness Training
- Operations-level Classroom/Hands-on Training
- National Hydrogen and Fuel Cell Emergency Response Training Resource
Outline for Today’s Presentation

- Fuel Cell Basics and Applications
- Properties of Hydrogen
- Primary Codes and Standards
- Fundamental Safety Considerations
- Hydrogen Safety Resources
- First Responder Training Resources
- Concluding Thoughts
Fuel Cell Basics and Applications
Why Hydrogen?

• Excellent energy carrier
• Nonpolluting
• Economically competitive
• As safe as gasoline
• Used safely for over 50 years
• Produced from a variety of sources

Photo courtesy of the California Fuel Cell Partnership
Where Do We Get Hydrogen?

Renewable Sources:
- Solar, wind, geothermal, hydro, biomass, algae

Traditional Sources:
- Natural gas, gasoline, nuclear, coal
The use of hydrogen is not new; private industry has used it safely for many decades. Nine million tons of hydrogen are safely produced and used in the United States every year. 56 billion kg/yr are produced globally. For example, H₂ is used for:

- Petroleum refining
- Glass purification
- Aerospace applications
- Fertilizers
- Annealing and heat treating metals
- Pharmaceutical products
- Petrochemical manufacturing
- Semiconductor industry
- Hydrogenation of unsaturated fatty acids in vegetable oil
- Welding
- Coolant in power generators

The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. | Photo credit Air Products and Chemicals hydrogen production facilities.
How a Fuel Cell Works

1. Hydrogen fuel flows into the anode.

2. Electrons move to the cathode, generating electricity to power the motor.

3. Oxygen flows into the cathode, combining with hydrogen to produce water (H₂O), which is emitted from the vehicle.

Vent = Heat & Water Vapor
Fuel Cell Applications

Fuel cells have a broad range of applications:

- **Transportation**
 - Light and medium duty
 - Heavy duty and transit
 - Auxiliary power for refrigeration trailers and trucks
 - Forklifts
 - Maritime

- **Stationary power**
 - Backup power for cell tower sites
 - Combined heat and power
 - Data centers, etc.

- **Portable power**
Fuel Cells
Where are We Today?

Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles

The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, and forklifts

More than 35,000 fuel cells shipped in 2013
(~a consistent 30% annual growth since 2010)

Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts
Forklifts are equipped with fuel cells as a replacement for traditional battery packs.

A typical project consists of a refueling system (tank, compressor, piping, etc.) providing hydrogen to a dispenser located inside a warehouse.
Fuel Cell Cars are Here!

FCEVs on display at North American auto shows.

Honda Fuel Cell Electric Vehicle

Hyundai’s first mass-produced Tucson Fuel Cell SUVs arrived in Southern California May 20, 2014

Lease includes free H₂ and maintenance.
The Fuel Cell Electric Vehicle (FCEV)

FCEVs are available now in southern California and coming soon to a neighborhood near you.

Hydrogen FCEV System

- Power Control Unit
- Electric Motor
- Fuel Cell Stack
- Hydrogen Storage Tanks
- Battery

FCEVs generate electricity via the chemical reaction of combining hydrogen and oxygen into water.

Reduces Greenhouse Gas Emissions

- Gasoline
- \(\text{H}_2 \) from natural gas
- \(\text{H}_2 \) from Wind

Refuels Rapidly

Taking only a few minutes and using familiar technology.

Can travel 300 Miles

Between refills.

Emits Only Water

From the tailpipe.

Uses Domestic Fuel

- Natural gas
- Biomass
- Water (electrolysis)
- Waste products

Operates Efficiently

- Internal combustion: 120-150%
- FCEV: 60%

Runs Quietly

Even at highway speeds, since there are no mechanical gears or combustion.

Scales Up Easily

As fuel cells can be added to the stack to increase power.
FCEV System Layout

- **Cooling System**: Typically, slightly larger radiators than conventional.
- **Electric Motor**: Electrical component; drives vehicle by electricity.
- **Power Electronics**: Electrical component; distributes electricity.
- **Fuel Cell**: Electrical component; generates electricity from hydrogen.
- **Hydrogen Tanks**: Compressed, gaseous fuel; vehicle fueled with hydrogen.
- **High Voltage Battery**: Electrical component; captures regen braking, supports acceleration.

Source: California Fuel Cell Partnership
Hydrogen Fueling Stations
H₂ Infrastructure Development and Status

Nationwide
- 1500 mi. of H₂ pipeline
- >9M metric tons produced per year
- ~50 stations (~10 public)

States
- CA- 100 stations, ~$100M planned through 2023
- 8 State MOU- 3.3M ZEVs by 2025
- Northeast states, Hawaii

Centralized H₂ Production Facilities (source: NREL)
H₂ stations in CA (source: CAFCP)
Typical Station Configurations

- Hydrogen can be delivered or made on site
- Liquid delivered → gaseous \(\text{H}_2 \)
- Gaseous delivered or piped → booster compressed gaseous \(\text{H}_2 \)
- Natural gas → gaseous \(\text{H}_2 \)
- Water + electricity → gaseous \(\text{H}_2 \)
Gaseous hydrogen is:

- Delivered to fueling station by tube trailer
- Compressed and stored onsite in cylinders
- Piped to dispenser for fueling vehicles
Liquid hydrogen can be delivered to the fueling station by tanker truck, as is shown for this hydrogen and gasoline station.

Compressed gas storage
IC 90 Compressor
LH2 tank
Fueling dispenser & canopy

Photos: California Fuel Cell Partnership and Linde.
Liquid hydrogen is:

- Delivered to fueling station by tanker truck
- Stored underground as a liquid
- Vaporized in above-ground vessel
- Compressed and stored onsite in cylinders
- Piped to dispenser for fueling vehicles
Properties of Hydrogen
Hydrogen Properties and Behavior

- A gas at ambient conditions
- Hydrogen is a cryogen: exists as a liquid at -423°F (-253°C).
 - Compressing the gas does not liquefy it
 - No liquid phase in a compressed gaseous hydrogen storage tanks
- LH2 storage at relatively low pressure (50 psi)
- Double walled, vacuum insulated tanks with burst disks, vents, and PRDs
- Volumetric ratio of liquid to gas is 1:848
 - Compare water to steam (1:1700)
- Energy content of 1kg of H₂ is approximately equal to 1 gal of gasoline (in BTUs)

Codes and Standards: IFGC Chapter 7, ASME B31.12, CGA G5.5
Gaseous hydrogen:

- has a flammable range of 4-75% in air
- will typically rise and disperse rapidly (14x lighter than air)
- diffuses through materials not normally considered porous
- requires only a small amount of energy for ignition (0.02 mJ)
- burns with a pale blue, almost invisible flame
- can embrittle some metals
Hydrogen Properties: A Comparison

<table>
<thead>
<tr>
<th></th>
<th>Hydrogen</th>
<th>Natural Gas</th>
<th>Gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Toxicity</td>
<td>None</td>
<td>Some</td>
<td>High</td>
</tr>
<tr>
<td>Odor</td>
<td>Odorless</td>
<td>Mercaptan</td>
<td>Yes</td>
</tr>
<tr>
<td>Buoyancy</td>
<td>14X</td>
<td>2X</td>
<td>3.75X</td>
</tr>
<tr>
<td>Relative to Air</td>
<td>Lighter</td>
<td>Lighter</td>
<td>Heavier</td>
</tr>
<tr>
<td>Energy by Weight</td>
<td>2.8X</td>
<td>~1.2X</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>> Gasoline</td>
<td>> Gasoline</td>
<td>MJ/kg</td>
</tr>
<tr>
<td>Energy by Volume</td>
<td>4X</td>
<td>1.5X</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>< Gasoline</td>
<td>< Gasoline</td>
<td>MJ/Gallon</td>
</tr>
</tbody>
</table>

Source: California Fuel Cell Partnership
Comparing Hydrogen and Propane Flames
Primary Codes and Standards
Design Consideration: Codes & Standards

There are many organizations working on codes, standards and guides. https://h2tools.org/fuelcellstandards-view is currently tracking the world-wide development of over 300 hydrogen and fuel cell standards and related documents. Let’s focus on the critical infrastructure documents.

- International Fire Code (IFC) - addresses hydrogen applications
- International Building Code (IBC) - general construction requirements
- International Fuel Gas Code (IFGC)
- NFPA 1 Fire Code
- NFPA 2 Hydrogen Technologies Code
- NFPA 55 Compressed Gases and Cryogenic Fluids Code
- NFPA 70 National Electrical Code
- ASME B31.12 Hydrogen Pipelines and Piping Code - hydrogen piping design
Important ICC 2015 Code References

- **IFC Section 2309** – Hydrogen Motor Fuel-Dispensing and Generation Facilities
- **IFC Chapter 53** – Compressed Gases
- **IFC Chapter 58** – Flammable Gases and Flammable Cryogenic Fluids
- **International Fuel Gas Code (IFGC) Chapter 7** – Gaseous Hydrogen Systems

Significant changes in the 2015 IFC

“Compressed hydrogen (CH2) for use as a vehicular fuel shall also comply with Chapters 23 and 58 of this code, the International Fuel Gas Code and NFPA 2.” (IFC 5301.1)

”Hydrogen motor fuel-dispensing stations and repair garages and their associated above-ground hydrogen storage systems shall also be designed, constructed and maintained in accordance with Chapter 23 and NFPA 2.” (IFC 5801.1)
The Need for a National Hydrogen Code

With the increased interest in hydrogen being used as a fuel source, the National Fire Protection Association was petitioned to develop an all-encompassing document that establishes the necessary requirements for hydrogen technologies.

- Origin and development of the NFPA 2, Hydrogen Technologies Code
 - Technical committee formed in 2006
 - Focus is to address all aspects of hydrogen storage, use, and handling
 - Draws from existing NFPA codes and standards (extracts from NFPA 52, 55 and 853) (*NFPA 52 hydrogen requirements removed and transferred to NFPA 2*)
 - Identifies and fills technical gaps for a complete functional set of requirements
 - Developed for code users and enforcers
 - Structured so that it works seamlessly with building and fire codes

In the course of this presentation, any comment as to the “meaning” of any part of any NFPA code or standard is only the opinion of the presenter and is NOT to be relied upon as either accurate or official. Only the NFPA may issue a formal interpretation of its codes and standards.
Contents of NFPA 2, 2016 Edition

Fundamental Chapters
- Document Title, *Hydrogen Technologies Code*
- Chapter 1, *Administration*
- Chapter 2, *Referenced Publications*
- Chapter 3, *Definitions*
- Chapter 4, *General Fire Safety Requirements*
- Chapter 5, *Performance-Based Option*
- Chapter 6, *General Hydrogen Requirements*
- Chapter 7, *Gaseous Hydrogen*
- Chapter 8, *Liquefied Hydrogen*
- Chapter 9, *Explosion Protection*
- Chapter 10, *GH2 Vehicle Fueling Facilities*
- Chapter 11, *LH2 Fueling Facilities*
- Chapter 12, *Hydrogen Fuel Cell Power Systems*
- Chapter 13, *Hydrogen Generation Systems*
- Chapter 14, *Combustion Applications*
- Chapter 15, *Special Atmosphere Applications*
- Chapter 16, *Laboratory Operations*
- Chapter 17, *Parking Garages*
- Chapter 18, *Road Tunnels*
- Chapter 19, *Repair Garages*
- Annex A
- Annexes B-M

Use Specific Chapters

Reserved
Fundamental Safety Considerations
Hydrogen safety, much like all flammable gas safety, relies on five key considerations:

▶ Recognize hazards and define mitigation measures
▶ Ensure system integrity
▶ Provide proper ventilation to prevent accumulation (manage discharges)
▶ Ensure that leaks are detected and isolated
▶ Train personnel
General Considerations

Hydrogen cylinders and storage tanks should be stored outside at a safe distance from structures, ventilation intakes, and vehicle routes. This applies even while in use. Best practices call for compressed hydrogen bottles supplying a manifold to be located outside, with welded lines to connect to indoor equipment. Safety considerations for indoor storage or use of bulk gaseous hydrogen include:

- Buildings should be constructed of noncombustible materials.
- Mechanical ventilation systems should have inlets low to the ground and exhausts at the highest point of the room in the exterior wall or roof. Consideration should be given to providing venting for both normal conditions and emergency situations.
- Hydrogen sensors should be installed at the exhaust within the enclosure.
- Automatic shutoff that activates if a leak or fire is detected in the facility that is being supplied with hydrogen.
- Ignition sources should in storage areas should be avoided.
- Classified electrical equipment should be used in close proximity to storage systems.
- Gaseous hydrogen system components should be electrically bonded and grounded.
Electrical Equipment

Specific considerations:

- Fans for active ventilation systems should be provided with a rotating element of nonferrous or spark-resistant construction.
- Equipment or devices should be designed for use in hydrogen service.
- The gaseous hydrogen system should be electrically bonded and grounded.
- Equipment not conforming to NEC requirements must be located outside the area classified as hazardous.

<table>
<thead>
<tr>
<th>Location</th>
<th>Classification*</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area containing gaseous hydrogen storage, compression or ancillary equipment</td>
<td>Class 1, Division 2</td>
<td>Up to 15 ft from storage/equipment</td>
</tr>
<tr>
<td>Area containing liquefied hydrogen storage</td>
<td>Class 1, Division 2</td>
<td>Up to 25 ft from the storage equipment, excluding the piping system, downstream of the source valve</td>
</tr>
<tr>
<td></td>
<td>Class 1, Division 1</td>
<td>Within 3 ft from points where connections are regularly made and disconnected</td>
</tr>
<tr>
<td>Interior of dispensing equipment</td>
<td>Class 1, Division 2</td>
<td>Up to the support mechanism (anchoring the dispenser) or connection to the ground level</td>
</tr>
<tr>
<td>Exterior of outdoor dispensing equipment</td>
<td>Class 1, Division 2</td>
<td>Up to 5 ft from dispenser</td>
</tr>
<tr>
<td>Exterior of indoor dispensing equipment</td>
<td>Class 1, Division 2</td>
<td>Up to 15 ft from the point of transfer from floor to ceiling</td>
</tr>
<tr>
<td>Outdoor discharge from relief vents</td>
<td>Class 1, Division 1</td>
<td>Up to 5 ft from the source</td>
</tr>
<tr>
<td>Discharge from relief vents within 15 degrees of the line of discharge</td>
<td>Class 1, Division 2</td>
<td>5-15 ft from the source</td>
</tr>
<tr>
<td></td>
<td>Class 1, Division 1</td>
<td>Within 15 ft from source</td>
</tr>
</tbody>
</table>

* All equipment shall be rated for Group B applications (NFPA 70-500.6).
Outdoor Separation Distances

- Hydrogen cylinders and storage tanks should be stored outside at a safe distance from structures, ventilation intakes, and vehicle routes.

- A bulk hydrogen compressed gas system is an assembly of equipment that consists of, but is not limited to, storage containers, pressure regulators, pressure relief devices, compressors, manifolds, and piping, with a storage capacity of more than 5,000 scf (141.6 Nm3) of compressed hydrogen gas and that terminates at the source valve.
Outdoor Separation Distances for Bulk Hydrogen Systems

<table>
<thead>
<tr>
<th>Pressure (psig)</th>
<th>> 15 to ≤ 250</th>
<th>> 250 to ≤ 3000</th>
<th>> 3000 to ≤ 7500</th>
<th>> 7500 to ≤ 15000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Internal Diameter (in.)</td>
<td>2.07</td>
<td>0.75</td>
<td>0.29</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Exposure Group 1
- **a)** Lot lines
- **b)** Air intakes (HVAC, compressors, Other)
- **c)** Operable openings in buildings and Structures
- **d)** Ignition sources such as open flames and welding

40 ft | 46 ft | 29 ft | 34 ft |

Exposure Group 2
- **a)** Exposed persons other than those servicing the system
- **b)** parked cars

20 ft | 24 ft | 13 ft | 16 ft |

Exposure Group 3
- **a)** Buildings of non-combustible non-fire-rated construction
- **b)** Buildings of combustible construction
- **c)** Flammable gas storage systems above or below ground
- **d)** Hazardous materials storage systems above or below ground
- **e)** Heavy timber, coal, or other slow-burning combustible solids
- **f)** Ordinary combustibles, including fast-burning solids such as ordinary lumber, excelsior, paper, or combustible waste and vegetation other than that found in maintained landscaped areas
- **g)** Unopenable openings in building and structures
- **h)** Utilities overhead including electric power, building services or hazardous materials piping systems

17 ft | 19 ft | 12 ft | 14 ft |

Source: NFPA 55, 2013 Edition
Selection of Materials

- Materials of construction, including materials used in piping, valves, and seals, must be carefully selected to account for their deterioration when exposed to hydrogen at the intended operating conditions.

- The mechanical properties of metals, including steels, aluminum and aluminum alloys, titanium and titanium alloys, and nickel and nickel alloys are detrimentally affected by hydrogen.

- Exposure of metals to hydrogen can lead to embrittlement, cracking and/or significant losses in tensile strength, ductility, and fracture toughness. This can result in premature failure in load-carrying components.

- Additionally, hydrogen diffuses through many materials, particularly nonmetals, due to its small molecular size.

Preferred
- Generally acceptable materials include austenitic stainless steels, aluminum alloys, copper, and copper alloys.

Avoid
- Nickel and most nickel alloys should not be used since they are subject to severe hydrogen embrittlement.

- Gray, ductile, and malleable cast irons should generally not be used for hydrogen service.

Codes and Standards: IFGC 5003.2.2.1, IFGC 704.1.2.3, NFPA 2-10.3.1.3
A pressure relief device (PRD) valve failed on a high-pressure storage tube at a hydrogen fueling station, causing the release of approximately 300 kilograms of hydrogen gas. The gas ignited at the exit of the vent pipe and burned for 2-1/2 hours until technicians were permitted by the local fire department to enter the station and stop the flow of gas.

- The root cause of the incident was a failed pressure relief valve…
- An extensive metallurgical analysis of the failed valve concluded that improper material selection and deviations from valve production processes led to the valve failure.

The good news… There were no injuries and very little property damage. The corrugated roof on an adjacent canopy over a fueling dispenser was slightly singed by the escaping hydrogen flame, causing less than $300 in damage.

Source: http://www.h2tools.org/lessons
Hydrogen burns with a pale blue flame that is nearly invisible in daylight. Hydrogen flames also emit low radiant heat, so a person may not feel heat until they are very close to the flame. Best practices include the following:

• A portable flame detector (e.g., thermal imaging camera) should be used if possible.

• Otherwise, listen for venting hydrogen and watch for thermal waves that signal the presence of a flame.

• Use a combustible probe (e.g., broom)

• Always allow enough time for troubleshooting/debugging a monitoring system before it’s used.

• Where multiple gases are co-located, always respond in a manner to investigate/ mitigate the most hazardous gas.
A Lesson Learned on Hydrogen Leaks

Hydrogen Explosion and Iron Dust Flash Fires in Powdered Metals Plant

- Operators in a powdered metals production facility heard a hissing noise near one of the plant furnaces and determined that it was a gas leak in the trench below the furnaces. The trench carried hydrogen, nitrogen, and cooling water runoff pipes as well as a vent pipe for the furnaces.

- Maintenance personnel presumed that the leak was nonflammable nitrogen because there had recently been a nitrogen piping leak elsewhere in the plant. Using the plant’s overhead crane, they removed some of the heavy trench covers. They determined that the leak was in an area that the crane could not reach, so they brought in a forklift with a chain to remove the trench covers in that area.

- Eyewitnesses stated that as the first trench cover was wrenched from its position by the forklift, friction created sparks followed immediately by a powerful explosion. Several days after the explosion, Chemical Safety Board (CSB) investigators observed a large hole (~3x7 inches) in a corroded section of hydrogen vent piping inside the trench.

- As the hydrogen-air mixture in the partially open trench exploded, the resulting overpressure dispersed large quantities of iron dust from the rafters and other surfaces in the plant, and some of this dust subsequently ignited. Eyewitnesses reported that embers were raining down and igniting iron dust flash fires in the area. Visibility was so poor due to dust and smoke that even with a flashlight, it was impossible to see more than 3 or 4 feet. Three plant employees eventually died from burn injuries despite wearing supposedly flash-fire-resistant garments. Two others suffered smoke-inhalation injuries. Due to the extensive nature of the injuries, and the abundance of both hydrogen and combustible dust present at the time of the incident, it is difficult to specifically determine which fuel, if not both, caused the fatal injuries to the victims.

source: http://www.h2tools.org/lessons
Hydrogen Safety Resources
The Hydrogen Safety Panel is a team of highly experienced individuals created to address concerns about hydrogen as a safe and sustainable energy carrier.

Principal Objective: Promote the safe operation, handling, and use of hydrogen and hydrogen systems across all installations and applications by:

- identifying and addressing safety-related technical data gaps
- making design, construction, and operations personnel aware of relevant issues and best practices that affect safe operation and handling of hydrogen and related systems
- convincing design, construction, and operations personnel to give sufficient priority to safety in their daily, ongoing work.
The Hydrogen Safety Panel contributes to its objective by:

- participating in safety reviews
- providing safety planning guidance
- reviewing project designs and safety plans
- sharing safety knowledge and best practices
- presenting and recognizing safety as a priority
- participating in incident investigations.
Hydrogen Safety Panel Accomplishments

- Reviewed over 270 projects covering vehicle fueling stations, auxiliary power, backup power, combined heat and power, industrial truck fueling, portable power and R&D activities.
- White papers with recommendations recently include:
 - Secondary Protection for 70MPa Fueling
 - Safety of Hydrogen Systems Installed in Outdoor Enclosures
- Conducted 21 Hydrogen Safety Panel meetings since 2003. Panel meetings currently engage a broad cross-section of the hydrogen and fuel cell community.

Current Hydrogen Safety Panel Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nick Barilo, Manager</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>Richard Kallman, Chair</td>
<td>City of Santa Fe Springs, CA</td>
</tr>
<tr>
<td>David Farese</td>
<td>Air Products and Chemicals</td>
</tr>
<tr>
<td>Larry Fluer</td>
<td>Fluer, Inc.</td>
</tr>
<tr>
<td>Bill Fort</td>
<td>Consultant</td>
</tr>
<tr>
<td>Donald Frikken</td>
<td>Becht Engineering</td>
</tr>
<tr>
<td>Aaron Harris</td>
<td>Air Liquide</td>
</tr>
<tr>
<td>Chris LaFleur</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>Miguel Maes</td>
<td>NASA-JSC White Sands Test Facility</td>
</tr>
<tr>
<td>Steve Mathison</td>
<td>Honda Motor Company</td>
</tr>
<tr>
<td>Larry Moulthrop</td>
<td>Proton OnSite</td>
</tr>
<tr>
<td>Glenn Scheffler</td>
<td>GWS Solutions of Tolland</td>
</tr>
<tr>
<td>Steven Weiner</td>
<td>Excelsior Design, Inc.</td>
</tr>
<tr>
<td>Robert Zalosh</td>
<td>Fireexplo</td>
</tr>
</tbody>
</table>
New Requirements for NFPA 2-2016

NFPA 2, 2016 Edition has prescriptive requirements for Hydrogen Equipment Enclosures\(^1\), including:

- Ventilation
- Isolation (gas and fire barrier)
- Electrical requirements
- Bonding/grounding
- Explosion control
- Detection

\(^1\) A prefabricated area confined by at least three walls and a roof, not routinely occupied or used in a laboratory, with a total area less than 450 ft\(^2\) designed to protect hydrogen.
The Certification Challenge

The scarcity of listed hydrogen equipment places an extraordinary burden on code officials to ensure (approve) that products include the appropriate inherent or automatic safety measures.

Certification presents significant challenges.

- Few systems or equipment that are listed, labeled or certified
- Significant costs since the technology and products are still rapidly changing and each new iteration would require recertification

Development of a Certification Guide
The Hydrogen Safety Panel is developing a guide to assist code officials, designers, owners, evaluators and others with the application of requirements pertinent to the design and/or installation of hydrogen equipment as regulated by the model codes. The scope of the Guideline will be limited to those requirements where the terms approved, certified, listed and/or labeled are used.

Code and Standards: IFC 2309.2.2, NFPA 2-7.1.3
Supporting State Efforts

The Panel is a unique resource and can be a valuable asset for supporting the safe commercial rollout of fuel cell vehicles, stationary applications and the supporting infrastructure.

Can provide support to:

- Other federal agencies
- State agencies, code officials and permitting authorities
- Private industry and commercial installers

Types of Activities:

- Design and document reviews
- Participation in or review of risk assessments
- Site reviews

Safety is paramount - it's the first question we get asked in California when we go into local communities. If anything, we need to figure out how to expand the Safety Panel's reach. The reviews from the Panel have already shown benefit to the state - it's a crucial, trusted 3rd party resource. – 2015 DOE AMR Reviewer Comment

More information is available at http://www.h2tools.org/hsp
Hydrogen Tools

A Transformative Step Towards Hydrogen Adoption

- **Centralized Location**: organizes current H₂ resources in one robust location – including many proven tools, with plans for adding future content
- **Focused Content**: tailored to the specialized needs of H₂ user groups
- **Responsive Design**: enables H₂ safety work across both desktop and mobile devices
- **Trusted Communities**: fostered through social networking around H₂ subject matter expertise
- **Expandable Format**: built with frequently requested future feature sets in mind

http://h2tools.org

> Credible and reliable safety information from a trustworthy source
Opportunities for Information/Knowledge Dissemination

H₂ Tools Portal

Phase 1
Spring 2015

Potential Future Tools

- Share your tools!

- Compatibility of Materials
- Training for First Responders, Code Officials and Researchers
- User Group Networking
- Codes and Standards Tools
- QRA Tools
- Other relevant information sources

User Groups
- AHJ/code officials
- First responders
- Investors
- Insurers and risk managers
- Operations and maintenance
- Public
- Project proponents
- Research and development

Properties, Calculators & Bibliographic Database

Lessons Learned and Best Safety Practices

Potential Future Tools

Share your tools!
H2tools.org/bestpractices
...sharing experience, applying best practices

- Introduction to Hydrogen
 - So you want to know something about hydrogen?
- Hydrogen Properties
 - Hydrogen compared with other fuels
- Safety Practices
 - Safety culture
 - Safety planning
 - Incident procedures
 - Communications
- Design and Operations
 - Facility design considerations
 - Storage and piping
 - Operating procedures
 - Equipment maintenance
 - Laboratory safety
 - Indoor refueling of forklifts

 http://h2tools.org/bestpractices

Safety events from “H2incidents.org” illustrate what can go wrong if best practices are not followed.
Each safety event record contains

- Description
- Severity (Was hydrogen released? Was there ignition?)
- Setting
- Equipment
- Characteristics (High pressure? Low temperature?)
- Damage and Injuries
- Probable Cause(s)
- Contributing Factors
- Lessons Learned/Suggestions for Avoidance/Mitigation Steps Taken

http://h2tools.org/lessons
Quantitative Risk Assessment

- Developed toolkit to enable integrated probabilistic and deterministic modeling
 - Relevant H2 hazards (thermal, mechanical)
 - Probabilistic models (traditional QRA models) & H2-specific component data
 - H\textsubscript{2} phenomena (gas release, heat flux, overpressure)

- Variable Users
 - High level, generic insights (e.g., for C&S developers, regulators)
 - Detailed, site-specific insights (e.g., for AHJs, station designers)

- Currently, two interfaces (views):
 - "QRA mode" and "Physics mode"
 - Planned "performance-based design" mode for targeted analyses

First-of-its-kind software tool for integrating H2 consequence models w/QRA models
Includes behavior models & data developed through FY12
Introduction to Hydrogen for Code Officials

Provides an overview of hydrogen and fuel cell technologies, discusses how these technologies are used in real-world applications and discusses the codes and standards required for permitting them.

- Hydrogen and fuel cell basics
- Hydrogen and fuel cell applications
- Hydrogen fueling stations
- Fuel cell facilities

Developed by the National Renewable Energy Laboratory

http://h2tools.org/content/training-materials
Consists of material specific chapters (as individual PDF files) summarizing mechanical-property data from journal publications and technical reports

- Plain Carbon Ferritic Steels
- Low-Alloy Ferritic Steels
- High-Alloy Ferritic Steels
- Austenitic Steels
- Aluminum Alloys
- Copper Alloys
- Nickel Alloys
- Nonmetals

The mission of H2USA is to promote the commercial introduction and widespread adoption of FCEVs across America through creation of a public-private collaboration to overcome the hurdle of establishing hydrogen infrastructure.
Key Early Market Challenges Addressed by H2USA

- **Station Cost Reduction**
 - Fueling resources & delivery
 - State and local regulations

- **Station Locations**
 - Identify and prioritize markets
 - Regulatory barriers (zoning)
 - Station rollout timing

- **Investment and Finance**
 - Private sector financing
 - Government support

- **Market Support and Acceleration**
 - Product launch and timeline
 - Codes and standards (non-vehicle related)
 - Public education
First Responder Training Resources
Working with First Responders

Preplanning
• Facility owners and first responders should work together to perform preplanning activities. This should include a tour of the hydrogen facilities with focused attention on safety features and emergency shutoffs.

Training
• Training of emergency response personnel should be a high priority to ensure that these personnel understand how to properly respond to a hydrogen incident.
• A variety of resources are available to assist with this training (see the resource lists at the end of this presentation).

Equipment
• A hydrogen fire is often difficult to detect without a thermal imaging camera or flame detector. First responders have one available for their use.

Photo: Volpentest HAMMER Federal Training Center
First Responder Hydrogen Safety Training

National Goal
- Support the successful implementation of hydrogen and fuel cell technologies by providing technically accurate hydrogen safety and emergency response information to first responders

Integrated Activities
- Online, awareness-level training
 - http://hydrogen.pnl.gov/FirstResponders/
- Classroom and hands-on operations-level training
- National training resource (enabling trainers)
 - http://h2tools.org/fr/nt

A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy.
Accomplishments

- Online training – over 32,000 visits
- Operations-level (in-person) training has been attended by 1,030 firefighters
- CaFCP training has reached over 7,000 first responders
Online Awareness-level Training

- 100 from hydrogen and emergency response community conduct broad review (Summer 2006)
- On-line training launched January 27, 2007
- 200-300 unique visits monthly; >30,000 total.
Classroom and Hands-on Training

- **Classroom Content**
 - Hydrogen and Fuel Cell Basics
 - Hydrogen Vehicles
 - Stationary Facilities
 - Emergency Response
 - Incident Scenarios

- **Demonstrations/Hands-on**
 Exercise with FCEV Prop
 - Demonstration of Hydrogen Flame Characteristics
 - Student Participation in Rescue Evolutions

Multiple instructors for classroom training

A “rescue” at Sunnyvale (CA) Department of Public Safety
National First Responder Training Resource

Can be downloaded at http://h2tools.org/fr/nt
National Training Resource Downloads

Since October 2014

- 278 downloads
- in 6 Continents
- and 35 of 50 states
- translated into Japanese in support of Japan fuel cell activities
Safe practices in the production, storage, distribution and use of hydrogen are essential for deployment of hydrogen and fuel cell technologies. *A significant incident involving a hydrogen project could negatively impact the public’s perception of hydrogen systems as viable, safe, and clean alternatives to conventional energy systems.*

Hydrogen CAN be used safely. However, because hydrogen’s use as a fuel is still a relatively new endeavor, the proper methods of handling, storage, transport and use are often not well understood across the various communities either participating in or impacted by its demonstration and deployment. Those working with hydrogen and fuel cell technologies should utilize the online resources discussed in this presentation to become familiar with the technology.

The IFC, IFCG and NFPA 2 provide fundamental requirements for the use of hydrogen and fuel cell technologies. Online resources are available to help code officials and project proponents better understand and apply the necessary safe practices for the successful deployment of this technology.

Concluding thoughts

September 17, 2015
The author wishes to thank the U.S. Department of Energy’s Fuel Cell Technologies Office (Sunita Satyapal, Director and Charles James, Safety, Codes and Standards Lead), Dave Conover from the Pacific Northwest National Laboratory and the California Fuel Cell Partnership for their support of this work.

My Contact Information:

Nick Barilo, P.E.
Hydrogen Safety Program Manager
Pacific Northwest National Laboratory
P.O. Box 999, MSIN K7-76
Richland, WA 99352 USA
Tel: 509-371-7894
nick.barilo@pnnl.gov