WHEN TRUST MATTERS

CostFX - Full-scale explosions of gaseous hydrogen jets in congestion

With reference to earlier hydrocarbon tests

Rob Crewe 19 March 2024

Overview

- Objectives of the experimental part of the CostFXII JIP
- Comments on earlier experiments with natural gas
- Videos of large scale hydrogen experiments
 - Free jets
 - Quiescent homogenous mixture into pipework congestion
 - Gas jets into congestion that mimics pipework and hydrogen storage possibilities

2 DNV © 19 MARCH 2024

Objectives of experimental programme

Objectives

- Primary objective of the experiments:
 - To provide data to support modelling activities on hydrocarbon explosion loading
 - To provide empirical data on the explosion characteristics of hydrogen for realistic releases

Hydrocarbons (natural gas)

- To provide data on explosion loading generated by realistic releases in semi-confined and irregularly congested regions
 - (help understand the temporal and spatial variation of explosion loading)
- To measure the response of representative pipework structures to the explosions

• Hydrogen

- To provide data on the conditions that can lead to deflagration to detonation transition (DDT)
 - Realistic high pressure hydrogen jets
 - Quiescent homogenous mixtures at well-defined concentrations

Natural gas experiments

Experimental Arrangement

Containers and barrels

Representative pipework

Chamber dimensions 12m x 8m x 8m high (768 m3)

Congestion blocks

Achieving High Explosion Loads

- Variation in release location and mass release rates
 - High pressure natural gas jets of 0.33 to 0.65 kg/s
- Initial release configurations based on experimental judgement
 - Overpressures were too low
 - Significant proportions of the gas cloud were at poorly reactive concentrations
- Conducted CFD analysis as programme progressed (with assistance from Equinor)
 - Achieved significantly higher pressures

IGNITED01

T+: +339.653 ms Cam: Phantom v.8001 AcqRes: 1280 x 504 Rate: 5100 Exp: 18 μs

IGNITED05

T+: +247.142 ms Cam: Phantom v.8031 AcqRes: 1728 x 600 Rate: 3000 Exp: 10 μs

IGNITED05

Recirculated 2022.07.20 Steel Drum 1 136m Ign. Loc E Barrel C فلفلف فلقلف Barrel D Steel Drum 2 Release Point 6 RE 1 1 1 Barrel B 54n 20m to chamber + 4.5m inside rig 129m

Barrel A

Figure E11. Throw distances from test RECIRCUATED 01. Plan and photos of barrels/drums

Figure E14. Throw distances from test RECIRCULATED 01. Movement of steel drums

Experimental Summary

- Provided data to allow the ability of CFD modelling to predict:
 - Accumulation of natural gas from transient releases.
 - Temporal and spatial variations in explosion loading.
- Information of structural response also gained
 - Strain and pressure data
 - Allows assessment of structural modelling

Hydrogen experiments

Overview of Test Programme

- Free jet (no congestion) 3 experiments at different mass release rates
- Quiescent homogeneous tests 5 experiments
 - Each test had a specific concentration
 - Determining the concentration that could lead to DDT within the selected congested region
- Congested realistic releases 34 experiments
 - Three types of congestion
 - Partial confinement by wall on one side for one of these congested regions
 - Variation in mass release rates, release location and ignition location
 - Mass release rates 0.2 kg/s to 2.0 kg/s

Free Jet Release

Resolution : 1024x512 Frame rate : 20000fps

Jet Flame Behaviour

- Flame was luminous
- Previous work has shown that flame length correlates with energy release rate
 - Hydrocarbons and hydrogen
 - CostFX follows the same correlation
- Pressure generated by ignition of the jet No DDT

Lattice Congestion

Quiescent Tests

- Used lattice congestion
- Concentration range tested 21 to 30% hydrogen

No DDT

DDT

Axial Release – Lattice with Wall

Vessel Storage Array Congestion

Sparse configuration

Dense configuration

Wider Spacing in Storage Array

T+: -2.277 ms Cam: Phantom Flex4K (v.4001) AcqRes: 2048 x 504 Rate: 4100 Exp: 150 µs

Closer Spacing with Additional Cylinders

Explosion consequences

Explosion consequences

Life-sized Mannequin

Metal Drum 1/3rd Full with Water

Debris

Summary

Experiments

Series of natural gas tests to assess variation in drag loading Hydrogen free-jets Quiescent homogeneous hydrogen mixtures in one type of congestion Hydrogen jet releases into 3 congested regions

Findings

Validation data for variation of drag loading on pipework

Understanding of conditions that can lead to DDT with hydrogen

Data for model assessment (for the deflagration part only)

