Presentation Start

Hydrogen Behavior – Myth Busting

Topical Lecture The International Conference on Hydrogen Safety

September 11-13, 2007

Sandia National Laboratories

9/11/07

Acknowledgements

The authors wish to recognize the following people for their contribution to the science discussed in this presentation.

Groethem, Mark; SRI International Houf, Bill; Sandia National Laboratories Moen, Chris; Sandia National Laboratories Schefer, Bob; Sandia National Laboratories Andrei V. Tchouvelev; Tchouvelev & Associates

Hindenburg

Hydrogen Caused the Disaster

 \Rightarrow Hydrogen Molecular Diffusivity is 3.8 times that of CH₄

Therefore it diffuses rapidly and mitigates any hazard

Hydrogen is 14.4 times lighter than air

> Therefore it rapidly moves upward and out of the way

➡ We do not know the flammability limits for H₂

We just do not understand hydrogen combustion behavior

- Hydrogen release is different than other fuels
- Radiation is different than other fuels
- Hydrogen hazards can be compared favorably to experiences with other hydrocarbon fuels
 - Less dangerous than gasoline, methane …

Hydrogen is toxic and will cause environmental harm

"… We need to be indemnified against a hazardous toxic hydrogen spill …" – Generic Insurance Company

Hindenburg

Hydrogen Caused the Disaster

➡ Hydrogen Molecular Diffusivity is 3.8 times that of CH₄

- Therefore it diffuses rapidly and mitigates any hazard
- Hydrogen is 14.4 times lighter than air
 - Therefore it rapidly moves upward and out of the way
- We do not know the flammability limits for H₂

Lets get this out of the way! Hindenburg Disaster

- 36 out of 97 died mostly trapped by the fire of fabric, diesel fuel, chairs, tables ... (not hydrogen)
- The craft did not explode but burned – and while burning stayed aloft (Hydrogen was still in the nose)
- The craft fell to the ground tail first – the nose was still full of hydrogen

Radiation from the flame was red and orange – hydrogen flames emit in the near UV ~304 to 350 nm (OH* lines), 680 nm to 850 nm (vibrationally excited H₂O), and ~0.5 to 23 mm (water bands)

Université du Québec à Trois-Rivières

9/11/07

Lets get this out of the way! Hindenburg Disaster (Cont'd)

The covering was coated with cellulose nitrate or cellulose acetate -- both flammable materials. Furthermore, the cellulose material was impregnated with aluminum flakes to reflect sunlight. -- Dr. Addison Bain

A similar fire took place when an airship with an acetate-aluminum skin burned in Georgia – it was full of helium!

"I guess the moral of the story is, don't paint your airship with rocket fuel." -- Dr. Addison Bain

> Courtesy of *Dr. Addison Bain and the National Hydrogen Association*

Université du Québec à Trois-Rivières

➡ Hindenburg

Hydrogen Caused the Disaster

➡ Hydrogen Molecular Diffusivity is 3.8 times that of CH₄

- Therefore it diffuses rapidly and mitigates any hazard
- Hydrogen is 14.4 times lighter than air
 - Therefore it rapidly moves upward and out of the way
- \Rightarrow We do not know the flammability limits for H₂

Small Unignited Releases: Momentum-Dominated Regime

10

9/11/07

Data for round turbulent jets

Université du Québec à Trois-Rivières

In momentum-dominated regime, the centerline decay rate follows a 1/x dependence for all gases.

- The centerline decay rate for mole fraction increases with increasing gas density.
- The decay rate for H₂ is significantly slower than methane and propane.

Sandia National Laboratories

Small Unignited Releases: Buoyancy Effects

⇒ Data for round H₂ Jets (d_i=1.91 mm)

- At the highest Fr, 1/X_{CL} increases linearly with axial distance, indicating momentum dominates.
- As Fr is reduced buoyancy forces become increasingly Important and the centerline decay rate increases.
- The transition to buoyancy-dominated regime moves upstream with decreasing Fr.

Université du Québec à Trois-Rivières

9/11/07

➡ Hindenburg

Hydrogen Caused the Disaster

➡ Hydrogen Molecular Diffusivity is 3.8 times that of CH₄

Therefore it diffuses rapidly and mitigates any hazard

- Hydrogen is 14.4 times lighter than air
 - Therefore it rapidly moves upward and out of the way

 \Rightarrow We do not know the flammability limits for H₂

Buoyancy effects are characterized by Froude number

9/11/07

Horizontal H_2 Jet (d_i=1.9 mm)

- \Rightarrow Time-averaged H₂ mole fraction distributions.
- ➡ Froude number is a measure of strength of momentum force relative to the buoyant force

Fraction

Increased upward jet curvature is due to increased importance of buoyancy at lower Froude numbers.

Choked & Unchoked Flows at 20 SCFM

14

Tank Pressure = 3000 psig, Hole Dia. = 0.297 mm Exit Mach Number = 1.0 (Choked Flow) ╘ H2 Mole Fraction Fr ~ O(10⁴⁾ 0.2 0.10 R(m) 0.08 0 0.06 - 0.2 0.04 1.0 1.5 0.5 X(m)

Flowrate = 20 scfm, Hole Dia. = 9.44 mm Exit Mach Number = 0.1 (Unchoked Flow) Fr ~ O(100)

Correlations based on experimental data

- Start Intermediate Region
 x/D = 0.5 F^{1/2}(ρ_{exit}/ρ_{amb})^{1/4}
- End Intermediate Region
 x/D = 5.0 F^{1/2}(ρ_{exit}/ρ_{amb})^{1/4}

F = Exit Froude No. = U²_{exit} ρ_{exit}/(gD(ρ_{amb}- ρ_{exit}))

Start Intermediate Region - x = 6.3 m

Assuming gases at 1 Atm, 294K (NTP)
 Red – 10.4%
 Orange – 8.5%
 Green – 5.1%
 Blue – 2.6%

*(Chen and Rodi, 1980)

Momentum-Dominated Jets are within the Ignition Region

Flow between exit and 4% mole fraction (LFL) remains in jet momentum dominated regions Choked flow conditions

Unignited Jet Separation Distance Length Scales

Hole Flowrate Xmax - Distance to Start of Diameter 4% mole fraction **Intermediate Region** 3.175 mm (1/8 inch) 9.718x10⁻² Kg/sec 14.80 m (48.55 ft) 20.7 m (67.9 ft) (2,463 ft³/min)* 2.430x10⁻² Kg/sec 14.6 m (48.0 ft) 1.5875 mm (1/16 inch) 7.40 m (24.28 ft) (615.9 ft³/min)* 0.794 mm (1/32 inch) 6.075x10⁻³ Kg/sec 3.70 m (12.14 ft) 10.3 m (33.9 ft) (154.1 ft³/min)*

Pressure = ~20 MPa (~3000 psig)

*@NTP = 21° C (70° F), 101 kPa (14.7 psia)

➡ Hindenburg

Hydrogen Caused the Disaster

➡ Hydrogen Molecular Diffusivity is 3.8 times that of CH₄

- Therefore it diffuses rapidly and mitigates any hazard
- Hydrogen is 14.4 times lighter than air
 - Therefore it rapidly moves upward and out of the way
- We do not know the flammability limits for H₂

Flammability Limits for H₂

Upward Flame Propagation Reference **Tube Dimensions**, Firing Limits, percent Water Vapor Content cm end Higher Diameter Length Lower 7.5 Closed 4.15 75.0 Half-saturated 356 150 5.3 150 **Horizontal Flame Propagation** 5.3 150 5.3 150 5.0 150 **Tube Dimensions**, Limits, percent Water Vapor Reference Firing 5.0 150 end Content cm 4.8 150 Higher Diameter Length Lower 4.5 80 6.5 Half-saturated 356 7.5 150 Closed ____ 4.5 80 5.0 150 Ν 2.5 150 Ν

N

Downward Flame Propagation

Tube Dimensions, cm		Firing end	Limits, percent		
Diameter	Length		Lower Highe		
21.0	31	Open	9.3		
8.0	37	Closed	8.9	68.8	
7.5	150	Ņ	8.8	74.5	
7.0	150	Ņ		74.5	
6.2	33	Open	8.5		
6.0	120	Ņ	9.45		

Propagation in a Spherical Ves

Capacity, cc	Firing	Limits,	Water Va	
	end	Lower	Higher	Content
Not stated	Closed	9.2		Saturated
Not stated	Ņ	8.5	67.5	Ņ
1,000	Ń	8.7	75.5	Ń
810	N	5.0	73.5	N
350	N	4.6	70.3	N
35	Ņ	9.4	64.8	Ņ

Flammability Limits for H₂

Upward Flame Propagation Reference **Tube Dimensions**, Firing Limits, percent Water Vapor Content end cm Higher Diameter | Length Lower Seventy-eight investigations of hydrogen flammability limits were identified between 1920 and 1950. Hydrogen flammability limits are well Ves established. er Var tent irated

cm		end			1.000	N N	87	75.5	Ň
Diameter	Length		Lower	Higher	810	N	5.0	73.5	N
21.0	31	Open	9.3		350	N	4.6	70.3	N
8.0	37	Closed	8.9	68.8	35	N N	9.4	64.8	N N
7.5	150	Ņ	8.8	74.5		<u> </u>	0.4	04.0	<u> </u>
7.0	150	Ņ		74.5					
6.2	33	Open	8.5						
6.0	120	Ņ	9.45		Ņ	325			
-							ational	Laborator	ies III

What is a Reasonable Flame Stabilization Limit?

Which volume fraction contour is relevant:

- lean flammability limit? ... 4% or 8%
- detonation limit? ... 18%
- a fraction of the lowest lean flammability limit? ... 1%
- Ignition of hydrogen in turbulent jets occurs around 8% as measured by Swain.
 - This is consistent with the downward propagating limit of 8%

➡ We just do not understand hydrogen combustion behavior

- Hydrogen release is different than other fuels
- Radiation is different than other fuels
- "Hydrogen hazards can be compared favorably to experiences with other hydrocarbon fuels
 - Less dangerous than gasoline, methane …

Hydrogen is toxic and will cause environmental harm

"… We need to be indemnified against a hazardous toxic hydrogen spill …" – Generic Insurance Company

Hydrogen jets and flames are similar to other flammable gases

fraction of chemical energy
 converted to thermal radiation
 radiation heat flux distribution
 jet length

H₂ Flame Radiation

*H*₂O emission in IR accounts for 99.6% of flame radiation

Université du Québec à Trois-Rivières

9/11/07

22

Sandia National Laboratories

 ⇒ Orange emission due to excited H₂O vapor
 ⇒ Blue continuum due to emission

- due to emission from OH + H => $H_2O + h_V$
- UV emission due to OH*
- IR emission due to H₂O vibrationrotation bands

Thermal Radiation from Hydrogen Flames

- Radiation heat flux data collapses on singe line when plotted against product τ_G x a_p x T_f⁴.
- a_p (absorption coefficient) is factor with most significant impact on data normalization
- Plank mean absorption coefficient for different gases must be considered

- Previous radiation data for nonsooting CO/H₂ and CH₄ flames correlate well with flame residence time.
- Sandia's H₂ flame data is a factor of two lower than the hydrocarbon flame data.

Université du Québec à Trois-Rivières

23

Sandia National Laboratories

➡ We just do not understand hydrogen combustion behavior

- Hydrogen release is different than other fuels
- Radiation is different than other fuels
- "Hydrogen hazards can be compared favorably to experiences with other hydrocarbon fuels
 - Less dangerous than gasoline, methane …
- Hydrogen is toxic and will cause environmental harm
 - "… We need to be indemnified against a hazardous toxic hydrogen spill …" – Generic Insurance Company

Comparisons of NG and H₂ Behaviors

Comparison of Blow-Off Velocities for Hydrogen and Natural Gas 8000 7000 6000 Hydrogen Gas Velocity (m/sec) 5000 4000 3000 H₂ Sonic Velocity NG Sonic Velocity 2000 Methane Gas 1000 70 20 30 40 50 80 10 60 Jet Diameter (mm)

3.175 mm (1/8 inch) diameter hole

⇒ Assume 3.175 mm (1/8 inch) dia. hole ⇒ Unignited jet lower flammability limits > LFL H₂ - 4% mole fraction LFL NG - 5% mole fraction Flame blow-off velocities for H₂ are much greater than NG Flow through 1/8" diameter hole is choked V_{sonic} = 450 m/sec for NG (300K) V_{sonic} = 1320 m/sec for H2 (300K) Hole exit (sonic) velocity for NG is greater than NG blow-off velocity > No NG jet flame for 1/8" hole Hole exit (sonic) velocity for H_2 is much less than blow-off velocity for H₂ H₂ jet flame present for 1/8" hole

Université du Québec à Trois-Rivières

9/11/07

25

Sandia National Laboratories

Small Unignited Releases: Momentum-Dominated Regime

Université du Québec à Trois-Rivières

9/11/07

26

Sandia National Laboratories

Unignited jet concentration decay distances for natural gas and hydrogen.

Distance on Jet Centerline to Lower Flammability Limit for Natural Gas and Hydrogen

Tank Pressure	Hole Diameter	Distance to 5% Mole Fraction Natural Gas	Distance to 4% Mole Fraction. Hydrogen
18.25 bar (250 psig)	3.175 mm (1/8 inch)	1.19 m (3.90 ft)	4.24 m (13.91 ft)
	1.587 mm (1/16 inch)	0.59 m (1.93 ft)	2.12 m(6.95 ft)
207.8 bar (3000 psig)	3.175 mm (1/8 inch)	3.92 m (12.86 ft)	13.54 m (44.42 ft)
	1.587 mm (1/16 inch)	1.96 m (6.43 ft)	6.77 m (22.21 ft)

Distance to the lower flammability limit for hydrogen is about 3 times longer than for natural gas

9/11/07

Effects of surfaces ?

Surfaces may result in a larger increase of the flammable extent of jets for CH4 than H2

 "Transient puffs" seems to lead to a larger temporary increase of extent of horizontal hydrogen surface jets

28

Sandia National Laboratories

Small Unignited Releases: Ignitable Gas Envelope

 H_2 Jet at Re=2,384; Fr = 268

CH₄ Jet at Re=6,813; Fr = 478

9/11/07

Is there a myth about the minimum ignition energy?

Lower ignition energy of H₂ is the lowest of the flammable gases at stoichiometry

Over the flammable range of natural gas (~below 10%), however, H₂ has a comparable ignition energy.

Ignition Energy of H₂, CH₄ and gasoline with Air

Flammability Limits of H₂ Are Seven Times Wider Than CH₄

Air Products & Chemicals, Inc., 2001

Figure 1: Flammability Limits vs. Ignition Energy of H_2 , CH_4 , and Gasoline in Air

30

Jet Ignition Probability

• Methane jet into ambient air (Birch et. al., 1981)

We just do not understand hydrogen combustion behavior

- Hydrogen release is different than other fuels
- Radiation is different than other fuels
- "Hydrogen hazards can be compared favorably to experiences with other hydrocarbon fuels
 - Less dangerous than gasoline, methane ...
- Hydrogen is toxic and will cause environmental harm
 - "… We need to be indemnified against a hazardous toxic hydrogen spill …" – Generic Insurance Company

Some people just do not get it! ⇒H, \succ is not toxic, >it is environmentally benign \geq We just borrow it -- (2H₂0 + E -> 2H₂ + O₂; then $2H_2 + O_2 -> 2H_2O + E$ \Rightarrow H₂ is a fuel and as such has stored chemical energy >It has hazards associated with it It is no more dangerous than the other fuels that store chemical energy IT IS JUST different; -- WE UNDERSTAND THE SCIENCE We will learn how to safely handle H₂ in the commercial setting just as we have for our hydrocarbon fuels.

Publication list

	(1) Houf and Schefer, "Predicting Radiative Heat Fluxes and Flammability Envelopes from Unintended Releases of Hydrogen," accepted for publication Int. Jour. of Hydrogen Energy, Feb. 2006.
	(2) Schefer, Houf, San Marchi, Chernicoff, and Englom, "Characterization of Leaks from Compressed Hydrogen Dispensing Systems and Related Components," Int. Jour. of Hydrogen Energy, Vol. 31, Aug. 2006.
	(3) Molina, Schefer, and Houf, "Radiative Fraction and Optical Thickness in Large-Scale Hydrogen Jet Flames," Proceedings of the Combustion Institute, April, 2006.
	(4) Houf and Schefer, "Rad. Heat Flux & Flam. Env. Pred. from Unintended Rel. of H2," Proc. 13 th Int. Heat Tran. Conf., Aug., 2006.
k m	(5) Schefer, Houf, Williams, Bourne, and Colton, "Characterization of High-Pressure, Under-Expanded Hydrogen-Jet Flames," submitted to Int. Jour. of Hydrogen Energy, 2006.
, 111	(6) Houf and Schefer, "Predicting Radiative Heat Fluxes and Flammability Envelopes from Unintended Releases of Hydrogen." 16th NHA Meeting, Washington, DC, March 2005.
	 (6) Schefer, R. W., Houf, W. G., Bourne, B. and Colton, J., "Turbulent Hydrogen-Jet Flame Characterization", Int. Jour. of Hydrogen Energy 2005
	 (7) Schefer, R. W., Houf, W. G., Bourne, B. and Colton, J., "Experimental Measurements to Characterize the Thermal and Radiation Properties of an Open-flame Hydrogen Plume", 15th NHA Meeting, April 26-30, 2004. Los Angeles, CA.
	(8) Schefer, "Combustion Basics," in National Fire Protection Association (NFPA) Guide to Gas Safety, 2004.

Nighttime photograph of ~40 MPa large-scale H2 jet-flame test (d_j = 5.08mm, L_{vis} = 10.6 m) from Sandia/SRI tests.

Presentation End