INTERACTION OF HYDROGEN JETS WITH HOT SURFACES

A. Kessler, C. Wassmer, A. Koleczko, S. Knapp, V. Weiser, A. Raab, N. Eisenreich Fraunhofer Institute Chemical Technology ICT, Pfinztal, Germany

INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY

September, 11-13 2017 - Hamburg (Germany)

Interaction of Hydrogen Jets with Hot Surfaces Problem

- High pressure hydrogen storage and refueling
 - Safety valve / rupture disk activation, accidents,...
- Resulting hydrogen jets may ignite sponaneously or not!
- Moving scheme (explosion / cold jet) depends of various parameters
 - Most important: pressure & nozzle configuration
 - "Late ignition" at hot sufaces: important issue
 - Strongly enhanced flame velocities by turbulence
- Mechanisms not fully understood

Interaction of Hydrogen Jets with Hot Surfaces Approach

- Highly dynamic hydrogen jets
- Spontaneous release by rupture disk out of pipe Ø 10mm
- 2.5 / 10 / 20 / 40Mpa nominal release pressure
- Ignition source: glow plug
 - 3m / 5m / 7m distance to nozzle
 - 450°C 950°C temperature range in steps of 100°C
- Fast scanning NIR spectroscopy 1.2-2.2 μ m (H₂O Bands)
- In total 57 experiments

Interaction of Hydrogen Jets with Hot Surfaces Experimental Setup

- Fraunhofer ICT high pressure release facility
 - ~5l Volume
 - Fully remote controlled

Interaction of Hydrogen Jets with Hot Surfaces Release configuration

Interaction of Hydrogen Jets with Hot Surfaces

Interaction of Hydrogen Jets with Hot Surfaces Measured release conditions

Nominal pressure	Activation pressure	t ₉₀₋₁₀	Initial pressure decay	Averaged pressure decay	Initial gas temperature
[bar]	[MPa]	[s]	[bar/s]	[MPa/s]	[°C]
25	2.82 ±0.09	0.225 ± 0.000	310.9 ± 10	9.52 ±0.3	12.8 ±0.1
100	10.56 ± 0.29	0.218 ± 0.000	1350 ± 37	37.6 ±1	12.3 ±0.3
200	22.26 ± 0.58	0.200 ± 0.004	3206 ± 97	83.7 ± 2.5	11.4 ± 0.4
400	40.92 ± 1.21	0.180 ± 0.003	6739 ±233	170.3 ±6.2	9.1 ±1.2

Interaction of Hydrogen Jets with Hot Surfaces Reproducibility

- Data evaluation
 - Video analysis methods
- Exemplaric results:
 - Jet head propagation on jet axis

Interaction of Hydrogen Jets with Hot Surfaces Results & discussion

- Classification of results based on criterium "flame speed"
 - > 30m/s: "strong"
 - < 30m/s: "weak", further divided in</p>
 - "Weak" reaction
 - "Normal" reaction
 - Effects close to premixed spherical H₂-Air explosion

Interaction of Hydrogen Jets with Hot Surfaces Reaction type

d = 3m		T [°C]							
		450	550	650	750	850	950		
P [MPa]	2.5	-	-	H44	H43	H42	H41,H45,H46		
	10	-	-	H56, H57*	H55	H54	H53		
	20	-	-	-	H77, H78	H76	H74		
	40	-	-	H48	H49, H50	H51	H52		
d = 5m									
P [MPa]	2.5	-	-	-	-	-	H40		
	10	-	-	H61, H62*	H60	H59	H58		
	20	-	-	H66, H67*	H65	H64	H63		
	40	H24	H33	H34	H35	H37	H23		
d = 7m									
P [MPa]	2.5	-	-	-	-	-	-		
	10	-	-	-	-	H69	H68		
	20	-	-	H73*	H72	H71	H70		
	40	H25	H26	H27	H29	H30	H32		
No. West Change									
Reaction Type		No Reaction	Weak Reaction	Strong Reaction					

Interaction of Hydrogen Jets with Hot Surfaces

Reaction Type "Normal"

Interaction of Hydrogen Jets with Hot Surfaces

Reaction Type "Strong"

Interaction of Hydrogen Jets w. Hot Surfaces Reaction Type "Strong"

- Steps of video data analysis
- Experiment H51
 - 40MPa
 - Glow plug
 - 3m
 - 850°C
- Resulting jet
 - expected12° opening angle
- Strong explosion with shock wave

Interaction of Hydrogen Jets with Hot Surfaces Explosion on ignition & upstream propagation

0.67ms time step

3.3ms time step

Overview on the movement

- All image sections around ignition point in the sequence compacted →
- lacksquare Flame velocity of explosion lacksquare

Interaction of Hydrogen Jets with Hot Surfaces Movement

Downstream movement maximum intensity
Fireball

Flame velocity
Upstream front

Interaction of Hydrogen Jets with Hot Surfaces "Normal" reaction

Experiment H63 20MPa / 5m / 950°C 8

Explosion flame velocity (l.)
 24m/s close to spherical premixed
 → "Normal"

Flame velocity $\frac{1}{2}$ of $\frac{1}{2}$ running upstream ($\frac{1}{2}$) of $\frac{1}{2}$

Delayed when explosion @2m occurs

Interaction of Hydrogen Jets with Hot Surfaces "Weak" reaction

- Experiment H7120MPa / 7m / 850°C
- Reaction nearly invisible
- Explosion after 47ms
- No shockwaves
- Explosion and upstream propagation of the flame ends after 166.7ms

Interaction of Hydrogen Jets with Hot Surfaces "weak" reaction

- Experiment H7120MPa / 7m / 850°C
- Contour of explosion
- Contour of flame propagation
- Downstream shift after red & blue profile
- Corresponding explosion velocities (I.) & flame speed (r.)

Interaction of Hydrogen Jets with Hot Surfaces Spectroscopy

- Spectrometer
 - Avantes Avaspec NIR256-2.5TEC
 - 2000Spectra/s
- Field of View
 - Ø ≈ 10cm
 - Close to ignition point
- Least squares fit of waterbands
 - → Gas temperature
 - → 0.5 ms resolution in time

Interaction of Hydrogen Jets with Hot Surfaces Spectroscopy

"Normal" reaction:

Colder for 200ms until stagnation

Oszillations

- lower & higher frequencies
- Probably effect of turbulent combustion
- To be investigated in more detail

Reaction type: "normal" / "strong"

Interaction of Hydrogen Jets with Hot Surfaces Conclusion

- Interaction of H₂ jets investigated using high speed video analysis & BOS method
- Highspeed NIR spectroscopy used to obtain temperature profiles of deflagrations
- Jets ignite above 700°C under certain conditions
- Flame front propagation depends on all three varied parameters
 - Initial H₂ reservoir pressure
 - Temperature of the hot surface
 - Distance between nozzle and hot surface

Interaction of Hydrogen Jets with Hot Surfaces Conclusion

- Resultion reactions can be classified into
 - **Strong** Generate shockwaves, deflagrate with velocities >100m/s
 - **Normal** Similar to premixed stochiometric spherical hydrogen-air explosions
 - Weak well below
- >20MPa strong deflagrations due to high turbulence possible
- Upstream flame propagation occurs in most cases
- Acquired temperature profiles allow estimations of
 - radiation emission
 - heat transfer on structures

INTERACTION OF HYDROGEN JETS WITH HOT SURFACES

A. Kessler, C. Wassmer, A. Koleczko, S. Knapp, V. Weiser, A. Raab, N. Eisenreich Fraunhofer Institute Chemical Technology ICT, Pfinztal, Germany

INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY

September, 11-13 2017 - Hamburg (Germany)

Thank you for your attention!

