

Vented explosion of H₂/air mixture: a comparison benchmark study

ICHS • Hamburg • 2017/09

E.Vyazmina/S.Jallais/L.Krumenacker/A.Tripathi/A.Mahon/J.Commanay/ S.Kudriakov/E.Studer/Th.Vuillez/F.Rosset

Vented explosions

- Vented explosions are widely studied, both experimentally and numerically
- Several analytical models exist for the overpressure inside the enclosure
- In complicated cases it is very difficult to find a proper analytical model:
 - presence of multiple vents
 - obstacles
 - flammable layer
 - gradient

Maximum internal and external overpressures, the length of the external flame etc. => definition of the safety distances requires an accurate and validated prediction based on CFD modeling

- comparison with experimental data
- several recommendations for CFD modeling of vented explosions

Contents

- 1 Bench description
- 2 Simulations description
- 3 Simulation results
- 4 Conclusion and Discussion

Experimental chamber¹

Experimental set-up:

- Test chamber of 2m x 1m x 2m and square vent of 0.49m²
- Homogeneous H₂/air mixture of 16.5% (±0.4%)
- BW ignition
- Fresh gas movement was visualized by adding particles of NH₄Cl

Measurements:

- 3 piezo-resistive sensors (0-10 bar) for overpressure inside
- 3 piezo-resistive sensors (0-2 bars) for overpressure outside at 2m, 5m (at the axis of the vent) and 5 m away from the vent (on the axis perpendicular to the chamber)
- 100Hz low-pass filter is used for the pressure signal

¹ Daubech, J., Proust, Ch., Gentilhomme, O., Jamois, D., Mathieu, L., Hydrogen-air vented explosions: new experimental data, Proc. of 5th ICHS, 2013.

2 Simulations description

Bench participants and code description

Participant / Code	Domain (LxWxH)	Mesh	Number of grid cells	Turbulence modelling	Boundary conditions
Air Liquide / FLACS v10.4	10m by 5.5m by 5.5m	inside the box and in the evacuated cloud: 2.5cm	~6 M	RANS, k-eps	open outlet "plane wave" & wall boundaries for obstacles
APSYS / OpenFOAM 3.0.0	7.5m by 7m by 3.5m	Grid size 1.5cm close to walls, inside the box 3.125cm, outside 6.25cm	~1.2 M	LES - k-equation eddy viscosity model	open outlet boundaries & wall boundaries for obstacles
CEA / EUROPLEXUS	7.5m by 2.5m by 3m	Uniform 5cm	~1 M	Euler	Absorbing boundary conditions
Fluidyn / Fluidyn-VENTEX	7.5m by 8.5m by 4.5m	inside the box: 3cm; Refined in the axes of the explosion	~750k	RANS, k- omega SST	Open boundaries
ODZ-Consultant s / FLACS v10.3	8m by 7.5m by 3m	Uniform 3cm	~6.2 M	RANS, k-eps	open outlet "plane wave"& wall boundaries for obstacles

Simulation results

Results from numerical simulations: development of VEX

Results from numerical simulations: development of VEX

The moment of the external explosion

Experimental and numerical snapshots closely match

EXP

AL

10.4

Pressure evolution inside the chamber: P1

All CFD codes are in reasonable agreement with exp:

- the magnitude is overestimated by ~60%
 (Fluidyn and ODZ), 40% (CEA), 25% (AL),
 ~3% (APSYS)
- all codes except Fluidyn predict the appearance of the spike in advance compare to experiment
- whereas Fluidyn overpressure maximum is slightly delayed in time

Pressure evolution inside the chamber: P2

P2 (114 mbarg) is larger than P1 (85 mbarg) ⇒ more important to obtain a better agreement on P2

All CFD codes are in reasonable agreement with exp:

- the magnitude is overestimated by 25%
 (Fluidyn), 20% (ODZ and AL), and 7% (CEA)
- APSYS underestimates by 23%
- all codes except Fluidyn predict the appearance of the spike in advance compare to experiment
- whereas Fluidyn overpressure maximum is slightly delayed in time

Flame propagation distance vs. time

Simulated flame shows the same tendency as the experiment:

- slight acceleration approaching the vent (flame velocity is approximately 30 m/s),
- a violent acceleration up to 185 m/s due to the rapid burning of the evacuated cloud of fresh gas
- a deceleration of the flame at the end due to a slow burning of the rest of the mixture (less reactive and less turbulent)

Pressure evolution outside the chamber at 2m and 5m

A 2m P is:

- overestimated by 50% (ODZ), 20% (AL) ← presence of external walls
- underestimated by 50% (Fluidyn and CEA) ← absence of external walls

A 5m (close to the wall) P is:

- overestimated by 90% (ODZ), 50% (AL) ← presence of external walls ⇒ increase of the P
- underestimated by 30% (Fluidyn and CEA) ← absence of external walls

Conclusion and Discussion

Conclusion

- Inside the combustion chamber CFD matches closely experiment
- Outside the overpressure is underestimated:
 - CEA and Fluidyn considered that the combustion chamber is installed in a free field, without any interaction with outside structure. But the experimental facility is confined by two walls:
 - one in the streamwise direction (50 cm away from the detector at 5 m)
 - another all along the lateral direction (50 cm away of the chamber wall)
 - ⇒ extra confinement leads to the increase the overpressure outside the chamber
 - ⇒ no effect on the pressure inside the chamber (in the absence of flame-structure interaction)
 - Simulations performed with a stretched grid (APSYS) in the region of pressure detectors lead to an extra numerical diffusion and giving lower overpressure

Recommendations for CFD modelling of VEX

Based on the comparison sim/exp several **best practice recommendations** can be given:

- CFD can be used for large vent area and BWI
- The grid must be uniform inside the chamber and in the region of the evacuated cloud
- For the correct estimation of the overpressure outside the enclosure, all confinements and external rigid structures must be taken into account (represented in CFD simulations or a correction factor must be suggested)
- The grid must be uniform without any stretching in the region of interest (the region of monitoring points)

Results must be verified for other concentrations, gradient mixtures, CI and a presence of obstacles in the chamber

