

Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels

THIS DOCUMENT IS PUBLIC • AIR LIQUIDE R&D

7th Int. Conf. on Hydrogen Safety - Hamburg, Germany - Sept. 11-13, 2017 - P. Blanc-Vannet, P. Papin, M. Weber, P. Renault, J. Pepin, E. Lainé, G. Tantchou, S. Castagnet, J.C. Grandidier

Composite pressure vessels @Air Liquide

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

A three-stage development model

Engineering & Construction designing and building state-of-the-art production units for Air Liquide as well as for third-party customers.

Large Industries

investing long-term to produce large quantities of gases for our customers and to meet the Group's needs.

Part of the production capacity of Large Industries is used to serve Industrial Merchant, Healthcare, Electronics and Global Markets & Technologies within a geographic radius of about 250 km. Products are distributed in liquid form (in cryogenic trucks driven directly to storage units on the customer's premises) or in gaseous form (in cylinder) depending on the quantities required.

Gas production is actually a local activity, as gas es are not transported overlong distances. with the exception of some rare and specialty gases used mainly in electronics.

(a) A SU: Air Separation Unit

Hydrogen and carbon monoxide

production unit

(Steam Methane Reformer)

(o) On-site: Small local production unit

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels

THIS DOCUMENT IS PUBLIC

AL in the hydrogen value chain

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

AL in the hydrogen value chain

Composite cylinders as customer's storage to be filled

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

R&D activity in composite pressure vessels

R&D knowledge covering **all aspects of cylinder's lifetime within AL operations**Targeting a **safe & efficient use** of composite cylinders

Reduce the total cost of safely operating

composite pressure vessels through better understanding

Assess the **consequences** of accidental events and **mitigate**the industrial risk

HIS DOCUMENT IS PUBLIC

7th Int. Conf. on Hydrogen Safety – Hamb

Ensure structural integrity of

vessels through their lifetime,

beyond existing standards

Collapse of plastic liners

- 1. Hydrogen permeates through plastics
- Permeation equilibrates, with hydrogen present in porosities and absorbed in the materials
- 3. Trapped hydrogen desorbing, liner and composite having different permeability
- => Pressure at liner composite interface

Important deformation of the liner, even when glued to the composite shell

Depending on:

- Pressures
- Emptying flow rate

D LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels

Sample scale study in ANR project Colline

Current mitigation methods

- Collapse is related to hydrogen desorption
 - Collapse is linked to high pressure
 - Not observed without stabilisation time at high pressure
- Depending on cylinder design, service pressure & flow rate, collapse appears at different pressure level
 - A Residual Pressure Valve (RPV) can be used and qualified for a maximal flow rate to avoid collapse in normal operating conditions
- Collapse can not be seen without internal inspection
 - Mandatory only once every 10 years (for transportable cylinders)

Need to define a liner collapse resistance test

To prove no collapse happening between WP and RPV pressure

Full scale H2 cycling tests = huge costs & duration!

Need to investigate **long-term consequences** of a collapse in
case of repeated collapses
(risk = premature leak)

Objectives of the project Colline

with funding from French National Research Agency (ANR)

- Better understand the conditions leading to a collapse of the plastic liner
 - Emptying tests on 2.4 L 700 bar cylinders
 - Definition of representative samples for parametric study
 - Identification of the influence factors
 - Maximum pressure
 - Decompression rate
 - Residual pressure

- Investigate the impact of a collapsed liner on the durability of a pressure vessel
 - Hydrogen cycling tests on tanks with collapsed liner
 - Development of a multi-physics numerical model to predict the fatigue behaviour of a collapsed liner

ENT IS F

Permeation tests - to get gas transport parameters... @AL

Molar flow rate and cumulated flow

Solubility S

mol/(m3.Pa)
Capacity of the
material to accept
solved gas

Diffusivity D

m²/s
Capacity of the
material to let the gas
flow through

Permeability Pe = S*D mol/(Pa.m.s)

700 bar hydrogen permeation test bench

For a given pressure and temperature condition

R LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

THIS DOCUMENT IS PUBLIC

...to allow calculating the pressure at liner-composite interface

Decompression tests on liner/composite plates @Pprime

Samples representing cylinder wall: 2mm thermo-compressed polyamide 2mm carbon/epoxy composite

Traction machine with hydrogen chambre Mechanical stress on the edges to reproduce the liner stress state Temperature control - 25 °C or 65 °C to study the influence of temperature on collapse Maximal pressure 350bar of hydrogen long hold before rapid decompression CT Scan observation before and moments after decompression

A sample scale study is possible

Strong collapse, small decrease over time

Conditions

Temperature 65°C
Decompression speed 50 bar/min

No collapse

1 h after test – max gap 2.4 mm

1 month after test – max gap 1.86mm

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

What happens to the sample

What happens to the sample

Initial equilibrium $\Delta P = P_i - P_g = 0$

Ext. pressure removed

Gas desorption

0 ≤ P_i-P_s ≤ 350bar

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

What happens to the sample

THIS DOCUMENT IS PUBLIC

Influent parameters

Pressure

Initial pressures:

- 350 bar (collapse)
- 250 bar (no collapse)
- 175 bar (no collapse)

2-steps decompression

Residual pressure hold:

- at 20 bar (collapse)
- at 60 bar (collapse)
- at 175 bar (no coll.)

Low flow rate

Emptying flow rates:

- 7, 50, 500 bar/min (collapse)
- 0.7 bar/min (no coll.)

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Conclusions

- The most influent parameter seems to be ΔP_{max} (the difference between pressure at liner/composite interface and pressure inside the liner)
- For a given emptying case, ΔP_{max} can be calculated using H₂ transport parameters obtained from permeation tests
- An idea of $(\Delta P)^{\text{limit}}$ can be obtained using decompression tests on liner/composite plates
 - A maximal flow rate can be calculated to remain in the "no collapse" zone

Open question: how to predict $(\Delta P)^{\text{limit}}$ for a **cylinder**?

 $\frac{3}{1000}$ Tests on cylinders (2.4 L, 700 bar H_2)

Estimation of ΔP_{max}

Initial pressure 35 MPa		Initial pressure 87.5 MPa	
Emptying rate	ΔP_{max}	Emptying rate	ΔP_{max}
0.007 MPa/min	9.0 MPa	0.007 MPa/min	10.0 MPa
0.01 MPa/min	12.4 MPa	0.01 MPa/min	12.7 MPa
0.015 MPa/min	16.5 MPa	0.02 MPa/min	24.8 MPa
0.025 MPa/min	22.5 MPa	0.03 MPa/min	34.6 MPa
0.04 MPa/min	27.1 MPa	0.04 MPa/min	42.4 MPa
0.07 MPa/min	31.1 MPa	0.07 MPa/min	59.4 MPa
0.7 MPa/min	34.2 MPa	0.7 MPa/min	85.9 MPa

Gas diffusion calculations using parameters from permeation tests

/!\ in this calculation, S and D are independent of P and T (not true!) => the error induced has not been estimated (could be important)

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Conclusions

- The value of $(\Delta P)^{limit}$ obtained on plate samples (250-300bar) seems conservative compared to the value on cylinders (300-500bar)
- Once $(\Delta P)^{limit}$ is known, a maximal flow rate can be calculated

=> Permeation and decompression tests could provide a method for preventing the formation of liner collapse by adapting operational flow rates

• The effect of pressure and temperature on transport coefficients (S and D) should be assessed to refine the calculation of ΔP through emptying

• Cases where liner is not glued to the composite (typically HDPE liners) should be investigated - $(\Delta P)^{limit}$ may be easier to calculate in such case

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

