

Residual performance of composite pressure vessels submitted to mechanical impact

7th International Conference on Hydrogen Safety Hamburg, Germany – Sept. 11-13, 2017

P. Blanc-Vannet, O.Bardoux, N.Alexandre, F.Nony, M.Barcikowski, R.Rybczynski, A.Maldachowska, P.Breuer, K.Lasn, A.Echtermeyer, F.Dahmene, S.Bittendiebel

Contents

- 1. Context and Hypactor project
- 2. Impact tests performed
- 3. Short term performance results
- 4. Calibration of inspection methods

Context and overview of the project

Today's challenges

- H₂: a highly valuable energy carrier for the 21St century
- Demonstrating optimum safety in use will contribute to help its social acceptance and its extensive use as an energy vector.
- Feedback gathered on cylinders currently in service (mostly metallic), => Resistance to mechanical impact is of main concern!
- HyPactor aims at strengthening the knowledge on influence of mechanical impact with respect to (type-IV) COPV integrity

Real life examples...

The past performance of Hexagon Lincoln's products in an accident does not guarantee a similar result in the future. All accidents involve different circumstances and therefore may result in different outcomes with respect to a CPV. Any CPV, which has been involved in an accident or has otherwise been misused must be inspected at a qualified service facility before the cylinder is returned to service to ensure it is safe for further use.

FCH JU Hypactor consortium

CPV Testing

CEA, WRUT

CPV Operation

Air Liquide, Hexagon

CPV Manufacturing

Hexagon

Non destructive testing

IS, WRUT, CEA

Modelling

NTNU

RCS Development

Hexagon, Air Liquide, IS, CEA

Project coordination support

Ayming (Alma)

Main goals

Goals:

- Build an extensive experimental database (impacts ↔ damages)
- Understand/characterize relationship between impact, damage and loss of performance (short term and long-term)
- Develop models to simulate mechanical impacts on CPVs
- Assess / develop relevant non-destructive inspection procedures and define pass-fail criteria for CPV inspection in service

Main objective:

- Provide recommendations for Regulation Codes & Standards (RCS)
 - Qualification requirements and acceptance criteria for new designs
 - impact testing set-up
 - Periodic inspection

Hypactor in a few figures

Tank tested # 100

CPV Working Pressures from 250 to 950 bar

CPV Water Volumes from 36 to 513 L

Impact Energies (0,3 to 10 kJ), Weights (1-100kg), Speeds (3-120m/s), Multiimpacts, Pressure state (0 to 875 bar), composite thicknesses (16 to 63mm)

Test to Failure or further NDT testing

Short-term (Burst) and Long-term (hydraulic cycling, hold) evaluations

Impact tests performed

Cylinders used

Hexagon ID	Volume (Liter)	Working pressure (MPa)	Nominal length (mm)	Nominal Diameter (mm)	Composite wall thickness (mm)	Weight (kg)
Α	36	70	906	319	23	32
В	255	95	2783	515	63	369
С	513	25	2032	675	16	128

All cylinders presented here are **Type 4 cylinders** of water volume 36L (model #A) produced by Hexagon Composites. They are all made of **HDPE-liner**, **metallic boss**, **and carbon fibre reinforcement**.

Impact test setup (1)

Impact test setup (2)

Scope of the presentation

The conditions below were common to all cylinders in this presentation:

- Only one single impact is performed on each cylinder Cylinder is neck-mounted
- Impactor is **hemispherical**, diameter 60 mm
- All cylinders are empty at the moment of impact
- Cylinders are type 4 with plastic liner
- Cylinders are model A (36 L for on-board H2 vehicles)
- Residual performance is assessed as residual burst pressure only in this presentation.
 - Reduction of fatigue performance due to impact has not been observed on Hypactor cylinders, but could occur with others (especially metallic liners)

HYPACTOR

Short term residual performance (burst pressure) of impacted cylinders

Impacts on empty cylinders

There seems to be an **energy threshold** below which **burst pressure becomes reduced**. Such behaviour has also been **observed on other models** of cylinders from [1].

For these Hexagon 36L cylinders impacted empty, the threshold seems to be between 1kJ and 3kJ

A potential explanation

K. Lasn et al., Artificial impact damage for estimating the short-term residual burst pressure of COPVs, 21st International Conference on Composite Materials, Xi'an, China, 22/08/2017

The effect of delaminations

Configurations	Range of burst pressures, [bar]
Healthy reference	18421865
A large delamination (as in 0 bar impact)	18421863
A small delamination (as in 700 bar impact)	18421866

Artificial delaminations, when modelled separately from fibre failures:

- Do not significantly alter stress fields
- Do not affect burst pressures

Empty and pressurised cylinders

Empty and pressurised cylinders

Energy transferred to the cylinder

incident energy (kJ)

/!\ Specific to the cylinder and test setup used!

Residual burst pressure

Considering absorbed energy leads to a common trend for empty and pressurised cylinders.

Conclusion:
Calibration of visual inspection

Conclusions

- For Hypactor cylinders, empty and pressurised cylinders look the same after an impact of same energy
 - this may depends on cylinder design
- For a same impact energy, empty cylinders are more damaged than pressurised ones
 - impacts should be performed on empty cylinders...
 - ...if the first point is still true for the new design
- Using the threshold, visual inspection can be calibrated in order to reject cylinders with decreased burst pressure and eliminate the risk of burst
 - Hypactor recommends that some pictures are taken during approval process, and included in user manual
- The calibration is specific to the cylinder design
- Other non destructive testing methods can also be calibrated to improve the reliability of inspection

The inspector's dream

Thank you for your attention

